Medical Image Analysis 73 (2021) 102187

Contents lists available at ScienceDirect

Medical Image Analysis

journal homepage: www.elsevier.com/locate/media

Towards lower-dose PET using physics-based uncertainty-aware n
multimodal learning with robustness to out-of-distribution data™

Viswanath P. Sudarshan?®’, Uddeshya Upadhyay?, Gary F. Egan®, Zhaolin Chen¢,

Suyash P. Awate **

2 Computer Science and Engineering (CSE) Department, Indian Institute of Technology (lIT) Bombay, Mumbai, India
b [ITB-Monash Research Academy, Indian Institute of Technology (IIT) Bombay, Mumbai, India
¢Monash Biomedical Imaging (MBI), Monash University, Melbourne, Australia

ARTICLE INFO

Article history:

Received 9 November 2020
Revised 12 July 2021
Accepted 16 July 2021
Available online 27 July 2021

Keywords:
Low-dose/low-count PET
Deep learning
Image-to-image translation
Multimodal learning
Uncertainty-aware learning
Physics-based learning

ABSTRACT

Radiation exposure in positron emission tomography (PET) imaging limits its usage in the studies of
radiation-sensitive populations, e.g., pregnant women, children, and adults that require longitudinal imag-
ing. Reducing the PET radiotracer dose or acquisition time reduces photon counts, which can deteriorate
image quality. Recent deep-neural-network (DNN) based methods for image-to-image translation enable
the mapping of low-quality PET images (acquired using substantially reduced dose), coupled with the
associated magnetic resonance imaging (MRI) images, to high-quality PET images. However, such DNN
methods focus on applications involving test data that match the statistical characteristics of the training
data very closely and give little attention to evaluating the performance of these DNNs on new out-
of-distribution (OOD) acquisitions. We propose a novel DNN formulation that models the (i) underlying
sinogram-based physics of the PET imaging system and (ii) the uncertainty in the DNN output through the
per-voxel heteroscedasticity of the residuals between the predicted and the high-quality reference images.
Our sinogram-based uncertainty-aware DNN framework, namely, suDNN, estimates a standard-dose PET
image using multimodal input in the form of (i) a low-dose/low-count PET image and (ii) the correspond-
ing multi-contrast MRI images, leading to improved robustness of suDNN to OOD acquisitions. Results on
in vivo simultaneous PET-MRI, and various forms of OOD data in PET-MRI, show the benefits of suDNN

over the current state of the art, quantitatively and qualitatively.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Positron emission tomography (PET) is a molecular imaging
technique that is vital in diagnosis, disease monitoring, therapy,
and drug development in various pathologies in oncology, neurol-
ogy, and cardiology as discussed in Chen et al. (2018). The ioniz-
ing radiation involved in PET is a cause of concern in radiation-
sensitive populations including pregnant women, children, and
adults that require longitudinal imaging (Vogelius and Shah, 2017).
The quality of the reconstructed image depends on the number
of acquired photon counts (Oen et al., 2019), where higher counts
lead to a higher signal-to-noise ratio (SNR). In current applications,
lowering the radioactive dose while maintaining a sufficient num-
ber of counts for acceptable image quality leads to an increase
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in scan time per bed position. This can increase patient discom-
fort and imaging artifacts (e.g., motion-related) and reduce scan-
ner throughput. Aligning with the principle of “as low as rea-
sonably achievable” (Voss et al., 2009), reduced dose can poten-
tially encourage pre-natal studies (e.g., (Jones and Budinger, 2013)),
early detection of brain disorders at pre-symptomatic stages
(e.g., Mosconi et al. (2010)). Furthermore, the ability to handle low-
count data can enable applications in dynamic imaging regimes,
e.g., functional PET imaging as shown in Jamadar et al. (2019),
Sudarshan et al. (2021), Li et al. (2020) that relies on a continuous
infusion of the radiotracer, where the number of photon counts
available per timeframe is substantially lower compared to con-
ventional static PET imaging. Hence, there is a need to achieve
PET imaging at low doses or low photon counts without compro-
mising image quality. Thus, we propose a framework to predict a
standard-dose PET image from the multimodal input in the form of
(i) a low-count PET image and (ii) the corresponding multi-contrast
magnetic resonance imaging (MRI) images acquired during simul-
taneous PET-MRIL
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Recent deep neural network (DNN) based methods for image-
to-image translation enable the mapping of low-quality PET im-
ages (acquired using substantially reduced dose), coupled with
the associated MRI images, to high-quality PET images (e.g.,
Xu et al. (2017), Chen et al. (2019a), Xiang et al. (2017),
Wang et al. (2018)). However, current DNN methods focus on ap-
plications involving test data that match the statistical character-
istics of the training data closely, and give little attention to eval-
uating the performance of these DNNs on new out-of-distribution
(OOD) acquisitions that differ from the distribution of images in
the training set. In the general context of PET imaging, OOD PET
data could arise from several underlying factors, e.g., variations in
radiotracers, anatomy, pathology, photon counts, hardware, recon-
struction protocol. It is unlikely that a single learning-based model
caters to all these OOD scenarios. To deal with various OOD scenar-
ios, for a fixed tracer and anatomical region, a good design choice
is to rely on the minimum number of DNN models; e.g., this allevi-
ates the complexity of selecting one among multiple learned mod-
els to process the data for a new subject. Therefore, any learned
DNN model should be robust across a broad spectrum of OOD
variations. This paper focuses on the robustness to OOD data that
corresponds to variation in the quality and characteristics of the
PET data. For instance, the number of counts available for recon-
structing the PET images shows a wide variation depending on
several factors as mentioned above, including the clinical/scientific
application, even for a fixed tracer and anatomical region. Typ-
ical PET scans involve photon counts (coincident events) across
a wide range of 106 to 10° counts (Cherry and Dahlbom, 2006)
with adjusted radiotracer dose for populations under increased ra-
diation risk, e.g., children and young adults. As another example,
the per-voxel photon counts also depend on patient-related fac-
tors such as body-mass index (BMI) and age (Karakatsanis et al.,
2015). For subjects with higher BMI, while certain studies (e.g.,
Chang et al. (2011), Watson et al. (2005)), suggest increasing the
dose, other studies suggest increasing the scan time; while longer
scans reduce patient comfort and scanner throughput, a significant
increase in the dose may have undesirable side effects. Other fac-
tors causing variations in data include: differences in age, differ-
ences in imaging protocols, subject motion, and pathology. Such
variations in the data lead to changes in image features such as
structure, texture, contrast, and artifacts.

In the context of medical image analysis, while several works
focus on improving the accuracy of the developed models,
there is limited focus on addressing the uncertainty involved
in interpreting the predicted outputs. Several works have de-
signed DNNs to model distributions as the outputs of their in-
termediate and/or final layers (e.g., Srivastava et al. (2014),
Gal and Ghahramani (2016)). Later works have leveraged such
DNN-modeling schemes for uncertainty modeling and estimation,
(e.g., Kendall and Gal (2017), Lakshminarayanan et al. (2017)).
Recent works show that modeling uncertainties can improve
the robustness of the DNN models for tasks like segmentation
and regression, (e.g., Jungo et al. (2018), Wang et al. (2019),
Baumgartner et al. (2019)). In a similar way, modeling the per-
voxel heteroscedasticity of the residuals between predicted and ref-
erence images can improve the learned model to better adapt
to the variability across real-world datasets. Exposing this het-
eroscedasticity as the per-voxel uncertainty in the predicted im-
ages, which allows the learned DNN to output a distribution of PET
images, may potentially aid in clinical interpretation (Nair et al.,
2020; Wang et al., 2019). DNNs that do not inform about the pre-
dicted images’ underlying risk can lead to misleading outputs, es-
pecially when presented with OOD data. Thus, we propose a mod-
eling and learning strategy that is aware of this uncertainty in the
predicted outputs. Several DNN learning methods show the bene-
fits of transform-domain loss functions during learning, where the
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transform domain refers to a manifold or feature space obtained
from transforming the images (both predicted and ground truth).
An example of transform-domain loss is the k-space-domain loss
employed for undersampled MRI image reconstruction (Yang et al.,
2017). In the same way, we propose a transform-domain loss that is
motivated by the physics of the image acquisition process, where
the transform domain is the sinogram domain for PET imaging. Our
sinogram-based uncertainty-aware DNN, namely, suDNN, frame-
work predicts a standard-dose PET (SD-PET) image from the mul-
timodal input in the form of (i) a low-count PET image (being
low quality) and (ii) the corresponding multi-contrast MRI images,
leading to improved robustness of the learned DNN model to OOD
acquisitions. By designing the DNN input as a combination of the
low-count PET image and the multi-contrast MRI, our framework
leverages aspects of learning relating to both image quality en-
hancement and inter-modality image-to-image translation.

This paper makes several contributions. We propose a DNN
framework to predict a standard-dose PET image from the mul-
timodal input in the form of (i) a low-count PET image and
(ii) the corresponding multi-contrast MRI images acquired dur-
ing simultaneous PET-MRI. We propose a novel DNN formulation
that models (i) the underlying sinogram-based physics of the PET
imaging system and (ii) the uncertainty in the predicted output
through the per-voxel heteroscedasticity of the residuals between
predicted and reference images. Compared to the current state of
the art, our sinogram-based uncertainty-aware DNN framework,
namely, suDNN, leads to improved robustness to OOD acquisitions
as shown by quantitative and qualitative evaluations on in vivo si-
multaneous PET-MRI. This paper focuses on PET-MRI of the human
brain using the [18-F] fluorodeoxyglucose (FDG) radiotracer.

2. Related work

Current systems for simultaneous PET-MRI typically require
long acquisition times (around 20 min) for multi-contrast MRI
scans, thereby leading to PET scans of equivalent duration. The
long acquisition time enables lower-dose PET imaging in com-
parison to typical systems acquiring PET and X-ray computed to-
mography (PET-CT) (Karakatsanis et al., 2015). However, with an
increasing emphasis on reducing the acquisition time in MR,
within simultaneous PET-MRI, e.g, works in Ehrhardt et al. (2014),
Sudarshan et al. (2020, 2019), it is important to enable PET imag-
ing with reduced scan times or reduced photon counts (per bed
position). Prior works on PET image enhancement can be classi-
fied into: (i) regularized reconstruction techniques from acquired
PET data and (ii) post-reconstruction techniques without and with
learning-based approaches.

Regularized PET reconstruction methods: These refer to mod-
eling prior knowledge, e.g., using total variation (TV) as in
Sawatzky et al. (2008) or anatomical information from the co-
registered MRI image within the PET reconstruction routine as
in Leahy and Yan (1991), Nuyts (2007), Schramm et al. (2018). Re-
cently, (Sudarshan et al., 2018; 2020) showed that a joint dictio-
nary model for both PET and MRI images shows improved robust-
ness to noise-level perturbations in the PET images. However, that
work focused on improving the noisy PET images and not on the
reduction of radiotracer dosage levels. Kim et al. (2018) employ a
DNN to improve PET image quality within the iterative PET recon-
struction framework to achieve a dose reduction factor (DRF) of
around 6x. However, in many use cases, the raw list-mode data is
either unavailable or entails complex mathematical models for ac-
curately modeling the details of the scanner physics and measure-
ment errors. Hence, there is interest in post-reconstruction meth-
ods for image quality enhancement.

Post-reconstruction image quality enhancement without
learning-based models. Most commonly, this involves Gaussian
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filtering the reconstructed PET image. Improvements over the post-
reconstruction Gaussian-smoothing approach come from meth-
ods that use higher-order statistical models for the PET image
(e.g., Bagci and Mollura (2013), Dutta et al. (2013)). Improve-
ments also come from joint modeling of dependencies across co-
registered PET and MRI images as shown in Song et al. (2019). Re-
cently, Cui et al. (2019) propose an unsupervised model for PET im-
age denoising by employing a conditional deep image prior (DIP)
that uses the subject’s anatomical MRI or CT as the input to the
DNN mapping. These methods focus on denoising, instead of deal-
ing with smaller radiation doses.

Post-reconstruction image quality enhancement with
learning-based models. Recent works like (Uddeshya and Awate,
2019; Masutani et al., 2020; Qiu et al., 2020; Upadhyay and Awate,
2019) have shown successful application of DNN based methods
for image-quality enhancement. In the context of PET quality
enhancement, some early works (Kang et al., 2015; Wang et al.,
2016) show that learning-based approaches, e.g., regression forests
and sparse dictionary modeling, can synthesize SD-PET images
from LD-PET images at a DRF of around 4x. For a similar DRF,
(i) Xiang et al. (2017) propose a DNN that uses an auto-context
strategy to estimate patches in the SD-PET image based on the
patches in the input set of LD-PET and Tilw MRI images and
(ii) Wang et al. (2018) employ a generative adversarial network
(GAN) framework, where the input to the generator is a fused
version of the multi-contrast MRI images and the LD-PET image.
(Gong et al., 2018) uses a ResNet architecture to learn a mapping
from the noisy LD-PET image to the SD-PET image (without any
dose reduction), where the training includes a VGG-based loss
term. Recent pioneering work by Xu et al. (2017) shows that it
is possible to achieve a DRF of around 200x using a DNN to
map the residual between the LD-PET image and the reference
SD-PET image, where the DNN uses an 2.5D-style input to mimic
volumetric mapping using a lighter and computationally cheaper
model. Subsequently, Chen et al. (2019a) shows that, with a
similar architecture and training strategy, including MRI images as
input produced better image quality than using PET images alone.
A slightly different strategy by Sanaat et al. (2020) shows that
learning a mapping between the LD-PET sinogram and the SD-PET
sinogram can lead to some improvement in the reconstructed
SD-PET images, compared to the strategy of learning the mapping
from LD-PET to SD-PET in the spatial image domain. However,
as mentioned earlier, the measured raw sinogram data might be
either unavailable or lead to complex models for direct integration
into the DNN framework. On the other hand, linear models of
the scanner-specific sinogram transformations are readily avail-
able, constructed using the knowledge of scanner geometry (e.g.,
Jan et al. (2004)). The retrospectively estimated sinogram data can
model reasonably well the acquired sinogram data obtained after
typical error-correction steps applied to the PET raw data.

The prior works discussed in this section employ loss func-
tions either exclusively in the spatial domain or exclusively in
the sinogram domain, but not both. Several DNN-based meth-
ods for undersampled MRI reconstruction have shown that in-
cluding a transform-domain (k-space) loss function in addition
to the spatial-domain loss function can improve the quality
of reconstructed images at higher undersampling levels (e.g.,
Schlemper et al. (2017) and Yang et al. (2017)). Second, the prior
works, including those for PET and MRI reconstruction, do not
evaluate the models for robustness to OOD data in new acqui-
sitions, which are essential for clinical translation. Third, typical
PET reconstruction methods seldom quantify the uncertainty in
the DNN output. Modeling uncertainty in DNNs can potentially
(i) inform the radiologist about the imperfections in reconstruc-
tions, which may aid in clinical decision making or subsequent
automated post-processing of reconstructed images, and (ii) pro-
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vide improved performance when the DNN is presented with 00D
data. Early influential work in Hinton et al. (2012) showed that
the performance of DNNs can be improved by employing dropout-
based regularization to reduce the problem of co-adaptation dur-
ing learning. Subsequently, work in Gal and Ghahramani (2016),
Gal et al. (2017) provided a Bayesian interpretation of dropouts
within a variational learning framework and used it to estimate
model-related uncertainty. In the works by Hinton et al. (2012),
Srivastava et al. (2014) the dropout probability was a tunable free
parameter. On the other hand, in the later works by Gal and
Ghahramani (2016), Gal et al. (2017), the dropout probability pa-
rameter was a hidden variable within the learning framework.
More recent work in Kendall and Gal (2017) improved uncer-
tainty model that quantifies both model-related and data-related
uncertainty. The uncertainty-related works discussed above pro-
pose to estimate the uncertainty in the outputs, during train-
ing and testing phases, using stochastic layers in the DNN archi-
tecture. In the context of medical image analysis, recent works
like Jungo et al. (2018), Wang et al. (2019), Jungo and Reyes (2019),
Baumgartner et al. (2019), Nair et al. (2020) discuss the uncer-
tainty estimation for medical image segmentation, and other works
like (Tanno et al., 2021; Sentker et al.,, 2018; Armanious et al.,
2021) discuss uncertainty estimation for various medical image re-
gression tasks such as image enhancement for diffusion MRI, image
registration, and biological age estimation using MRI, respectively.
Our novel DNN framework, (i) leverages the underlying physics
of the PET imaging system and (ii) models the uncertainty in the
DNN output through the per-voxel heteroscedasticity of the resid-
uals between the predicted and the high-quality reference images.
Our results on a cohort of 28 subjects with in vivo PET-MRI acquisi-
tion demonstrate (i) improved quality of the reconstructed images
and (ii) improved robustness of the learned model in reconstruct-
ing OOD PET data as compared to state-of-the-art methods. Addi-
tionally, compared to state of the art, we show that our proposed
model is robust to OOD data arising from other factors such as dif-
ferences in imaging protocol on another cohort, motion artifacts,
age, pathology, inter-scanner variability, as detailed in Section 4.

3. Methods

We describe suDNN’s mathematical formulation, architecture,
and the training strategy, for estimating SD-PET images using the
multimodal input data.

3.1. suDNN modeling

Let random fields U'? and USP model the acquired LD-PET
and SD-PET images, respectively, across the population. Let ran-
dom fields V™ and V™ model the acquired TIlw and T2w MRI
images, respectively. For each subject, the PET and MRI images
(U'P, v vT2 and USP) are spatially co-registered to a common
coordinate frame, where each image contains K voxels. We pro-
pose to learn the suDNN by relying on a multimodal image-to-
image translation framework incorporating a dropout-based statis-
tical model, for improved regularization during learning, involv-
ing a Bernoulli random variable B(p) with parameter p as de-
scribed in  Tompson et al. (2015). Thus, our framework takes
as input the random-field triplet X := {U'"®, V™! VT2} and maps
it to output (i) a distribution on the possible SD-PET images
associated with the input X, along with (ii) a distribution on
the possible per-voxel variances of the (heteroscedastic) resid-
uals associated with the predicted SD-PET images, the square
root of which can also be interpreted as the per-voxel uncer-
tainties associated with the predicted SD-PET images. Thus, the
suDNN models a stochastic regressor W (-; ®, B(p)), parameterized
by weights ® and the dropout-probability parameter p, such that
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X: Multimodal 2.5D Input suDNN

Tilw MRI T2w MRI

=9 (¥° (X; 08, B
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Reference SD-PET

= rsSPand sinogram
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Cp = ¢° (¥*(X; 8, B(p)); bc)

Fig. 1. Proposed suDNN Framework. The inputs X to suDNN are: (i) the low-dose/count PET image U'P and (ii) the multicontrast MRI images V™' and V2, incorporating

the 2.5D-style training scheme. The suDNN models the mapping W (; g, 6y, Oc, B(p)) :=

(Y (WP 0. B(p)): Ov), Y (WP (-1 65, B(p)): ), where Y8 (- 6, B(p)) denotes a

common backbone feeding into two disjoint heads Y (Y8 (-; 8, B(p)); 6y) and ¥ (B (-; 0g, B(p)): Oc). The 6. variables denote the parameters of each component. B(p) is a
BernoAulli random variable, with parameter p, modeling the dropout. The suDNN outputs are: (i) the high-quality PET image modeled by random field Y and (ii) the random
field C modeling the per-voxel variances in the residuals between the predicted image and the reference SD-PET image USP.

V(X;0,B(p)) = (?pfp), where YP and @ characterize distribu-
tions on the SD-PET images and on their associated per-voxel un-
certainties, respectively. In this way, ?p and fp are also stochas-
tic outputs where the stochasticity stems from the underlying
dropout layer involving parameter p, as detailed in the next para-
graph. suDNN learns the regressor using the training set 7 :=
{X; UUSP}N | comprising images from N subjects. Fig. 1 shows our
suDNN framework.

We propose a DNN model that is based on a U-Net archi-
tecture (Ronneberger et al., 2015). The proposed suDNN differs
from the standard U-Net by incorporating: (i) multimodal input
where the data from the PET, Tlw MRI, and T2w MRI images are
treated as different channels, (ii) a 2.5D-style (similar to the strat-
egy in Chen et al. (2019a)) where the estimation of a particular
slice in the SD-PET image takes as input, from each modality, a
collection of slices in the neighborhood, (iii) a dual-head output
(Fig. 1), where the output from one DNN head represents the pre-
dicted SD-PET images, and the output from the other head repre-
sents the per-voxel variances modeling the variability in the pre-
dicted SD-PET images, inspired by Kendall and Gal (2017), and
(iv) a dropout model (Srivastava et al., 2014), following its bottle-
neck layer, for regularization during learning. Specifically, suDNN
models the mapping
W (; 6,6y, 0c, B(p)) := (Y (Y°(:: 65, B(D)): by),

VB (0. B(D)): 0c)). (1)
where a single convolutional backbone represented by
¥B (.05, B(p)), parameterized by 6z and the Bernoulli ran-
dom variable B parameterized by p, feeds the resulting latent
features to the two disjoint output heads, i.e., one for repre-
senting the predicted images denoted by the mapping ¥Y(:; 0y)
and the other for representing the variance images denoted by
the mapping ¥C(:;0c). Thus, for a given multimodal input X
and the set of parameters ® := 6 U6y U6, the suDNN outputs

=YY (YB(X: B B(p)): 6y) and Cp := YC(YB(X: 6. B(P)): O).

3.2. Uncertainty-aware and physics-based loss functions

A mean squared error (MSE) loss function between the DNN-
output PET image ?p and the high-quality PET image USP assumes
homoscedasticity of the per-voxel residuals, which may turn out
to be a gross approximation in general, and especially so in the
context of OOD data. Thus, we propose a loss function that ex-
plicitly adapts to the heteroscedasticity of the per-voxel residuals
between the output PET image ?p and the high-quality PET im-
age USP. Our empirical evaluation (later) shows that such a model

leads to the robustness of the learned model to OOD PET test
data. Thus, for each subject, we model the output of suDNN as a
pair consisting of (i) the predicted SD-PET images ?p and (ii) the
images fp modeling the per-voxel variances in the residuals be-
tween the predicted images and the reference SD-PET image. An
alternate interpretation for the values in Y, and C, stems from
the notion of a DNN that outputs a family of images modeled
by a Gaussian distribution, where Y,J models the per-voxel means
and Cp model the per-voxel variances. We find that incorporating
this uncertainty-aware (or heteroscedasticity-based) loss leads to
improved robustness to OOD acquisitions. Thus, we propose loss
functions that enforce similarity in two domains, i.e., (i) the spa-
tial domain and (ii) the sinogram domain modeling the PET de-
tector geometry. We find that incorporating the transform-domain
(sinogram-domain) loss and modeling the per-voxel heteroscedas-
ticity in both domains make our model robust to OOD acquisitions.
The overall loss function of the suDNN, Lgy, is a weighted combi-
nation of two loss functions, i.e., (i) uncertainty-aware loss in the
image space Ly and (ii) uncertainty-aware PET-physics-based loss
in the sinogram space Ls.

Uncertainty-Aware Spatial-Domain Loss L. For input image
X;, let ?p,»[k] represent the kth voxel in the spatial domain for the
ith predicted image Yy;, and let C i[k] represent the kth voxel for
the ith predicted variance image Cp,. We employ a Gaussian like-
lihood model for the observed image U,.SD in the image space, pa-
rameterized by per-voxel means in ?pi =YY (B (X;: 0, B(p)); 6y)
and per-voxel variances in fp,- = Y (YB(X;; 05, B(p)); O¢c). Thus, the
negative of the log-likelihood function leads to the loss over the
training-set 7 as

LA (Vyilk] — USP[k]) -
£o@©:7) =YY Ep,, [W + 10g(ClK] + e)],

i=1 k=1
(2)

where € € RT is a small constant for numerical stability. Here, N
denotes the number of training samples, K the number of vox-
els in each image, and Epg(p) represents expectation under the
Bernoulli probability distribution characterizing B(p). The above
method of modeling uncertainty in the spatial domain is simi-
lar to Kendall and Gal (2017). Equation (2) consistﬁ of two com-
ponents: (i) the per-voxel squared residual/error (Yy;[k]-UP[k])?
scaleAd down by the variance fp,-[k], andA(ii) the penalty term
log(Cpi[k] + €) on the per-voxel variance Cp[k], which penalizes
large values of Cp;[k]. We enforce positivity on the elements of the
suDNN outputs ?pi using ReLU activation function in the final layer
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of the head modeling /Y. We enforce positivity of fpi by employ-
ing an exponentiation layer as the final layer of ¥C. suDNN learn-
ing does not require explicit supervision in the form of ground-
truth observations for Cp,, but rather learns to map to fpi using the
loss in Eq. (2) using the SD-PET image data USP,

Uncertainty-aware Sinogram-Domain Loss Ls. Let operator S
model the linear sinogram transformation associated with PET im-
age acquisition for each transaxial slice. The operator S takes a 2D
image with K voxels and produces a sinogram with L discrete ele-
ments. Because we model the per-voxel residual (?pi - Ul.SD) in the
spatial domain by a Gaussian distribution, the per-element residual
in the sinogram domain also follows a Gaussian distribution. Simi-
larly, given that fpi models the heteroscedasticity of the Gaussian-
distributed residuals across the voxels in the spatial domain, we
propose to model the distribution of the residuals in the sino-
gram domain as a factored multivariate Gaussian (one factor per
element), with the per-element variances of the sinogram-domain
residual SY,; — SUSP being SCp;. For simplicity, we exclude mod-
eling the covariances between the per-voxel residuals in the sino-
gram domain resulting from the dependencies introduced by the
sinogram operator S. Thus, we propose a physics-based loss term
in the sinogram domain as

N L l[” —_ SUiSD[l])Z
gs(G;T):=Z:Z ”‘*“’)[ pS@i[lHT

+ log(Sfpi[lHr)],

(3)

where t € R* is a small constant for numerical stability.

Overall Loss Function Lg;. We propose to optimize the set of
parameters ® of our DNN by minimizing the overall loss function
consisting of uncertainty-aware loss functions in both the image-
space and the sinogram-space given by

Lsy(O;T) :=Ly(O; T)+ALs(O; T), (4)

where XA is a non-negative real-valued free parameter that con-
trols the weight of the physics-based sinogram-domain loss. In this
work, we tune the value of A using a validation set.

3.3. DNN architecture and learning strategy

Figure 2 shows the details of the suDNN architecture. We
employ a U-Net architecture comprising an encoder and a de-
coder that have a symmetric structure, and incorporate skip con-
nections from the encoder to the decoder. Both the encoder
and decoder comprise three convolutional blocks. The downsam-
pling/upsampling layers downsample/upsample by a factor of two.
After every convolutional layer, suDNN uses standard batch nor-
malization (Ioffe and Szegedy, 2015) and ReLU activation. The bot-
tleneck layer is followed by a dropout layer (characterized by
B(p)) for regularization (Srivastava et al., 2014), using a dropout-
probability value of p=1/1024 during training as well as infer-
ence. Here, p is a hyperparameter, set such that it drops on an
average one channel (out of 1024 channels, see Fig. 2) at the
bottleneck layer per forward pass. suDNN uses the Adam opti-
mizer (Kingma and Jimmy, 2015) during training, including ¢, reg-
ularization on the weights, for 500 epochs, with an initial learning
rate of y =0.00003. suDNN employs a cosine annealing strategy
for updating y. During inference, we rely on the dropout layer to
generate the multiple outputs for a given input X; by performing
multiple forward passes, say M (here, M = 50), through the DNN
with dropouts activated, yielding a set of outputs {?im,flm}’n‘f:]
Here, ?lm is a particular sampled instance of the stochastic output
?p,-. We infer the final predicted images as the averages of the M

outputs, i.e., ¥; := (1/M) Y M_, Y™ and G := (1/M) Yn_, C".
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Fig. 2. suDNN Architectural Details. The numbers adjoining the blue boxes indi-
cate the number of feature maps obtained at that stage. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

4. Experiments and results

This section describes the in vivo data acquired for this work,
the baseline methods used for comparison, the empirical analyses
for evaluating the robustness of all methods to OOD degradations
in the input data, and ablation studies to analyze the contribution
of various components in the suDNN framework.

4.1. In vivo data

We acquired data using simultaneous PET-MRI in a cohort
of 28 healthy individuals (volunteers with mean age 19.6 years
and standard deviation 1.7 years, including 21 females) on a 3T
Siemens Biograph mMR system, following institute ethics approval.
The average dose administered for each subject was approxi-
mately 230 MBq F-18-FDG. The MRI contrast images, i.e., ultra-
short echo time (UTE), T1 MPRAGE, and T2-SPC, were acquired
during the PET scan. The SD-PET image was reconstructed us-
ing counts obtained over a duration of 30 min, starting 55 min
after the administration of the tracer. The total number of use-



V.P. Sudarshan, U. Upadhyay, G.F. Egan et al.

ful counts over the 30-minute duration used for reconstruction
of the SD-PET image were around 600 x 106, To simulate the LD-
PET data, we randomly selected around 3.4 x 106 counts, spread
uniformly over the scan duration, resulting in a DRF of around
180x. For attenuation correction, pseudo-CT maps generated us-
ing the UTE images (Burgos et al, 2014) were employed. Both
the SD-PET and LD-PET images were reconstructed using propri-
etary software using ordinary-Poisson ordered-subset expectation-
maximization (OP-OSEM) algorithm with three iterations and 21
subsets, along with point spread function (PSF) modeling and a
post-reconstruction Gaussian smoothing. The software produced
reconstructed PET images of voxel sizes 2.09 x 2.09 x 2.03 mm?3.
The voxel size for the reconstructed MRI images was 1 mm3
isotropic. For each subject, the LD-PET, SD-PET, and the T2w MRI
images were registered (using rigid spatial transformation) and re-
sampled to the T1lw MRI image space using ANTS (Avants et al.,
2014) software. For the task of predicting SD-PET images from the
input set of LD-PET, T1w MRI, and T2w MRI images, we randomly
selected 20 subjects for training, 2 subjects for validation, and the
remaining for testing. For each subject, we obtained 100 transaxial
slices (around 70 slices within the cerebrum and around 30 slices
in the cerebellum).

4.2. Baseline methods

We evaluate the performance of the proposed suDNN in com-
parison to five recently proposed DNN-based methods for SD-PET
prediction. For a fair comparison, we incorporate a 2.5D-style (sim-
ilar to the strategy in Chen et al. (2019a)) training scheme for all
other methods.

That is, to produce a predicted image for a given slice, we use
five slices as the input of the DNN (one central, two above, and
two below). The baseline methods are as follows.

e M1: Conditional DIP. M1 is an unsupervised method based on
conditional DIP in Cui et al. (2019). The method is unsuper-
vised and does not rely on any training data. As proposed in
Cui et al. (2019), the input to the DNN is the structural MRI
image. We use a U-Net as in Ronneberger et al. (2015) modi-
fied to accept a two-channel input (T1w and T2w MRI). For this
method, we use the validation set to tune the optimal number
of epochs, to maximize the SSIM between the predicted PET
image and the reference SD-PET image.

o M2: Unimodal ResNet with perceptual loss. M2 is similar to
the framework proposed in Gong et al. (2018). M2 uses only the
PET image (unimodal) as input, with a standard ResNet archi-
tecture (Gong et al., 2018), and employs a perceptual loss that
is based on features obtained from a VGG network trained on
natural images.

e M3 and M4: 2.5D unimodal and multimodal U-Net, re-
spectively. Both M3 and M4 use the architecture described
in Xu et al. (2017). M3 uses only the PET image as (unimodal)
input Xu et al. (2017). M4 uses PET and multi-contrast MRI im-
ages as multi-channel input (Chen et al.,, 2019a). Both M3 and
M4 explicitly model and estimate the residuals between the in-
put LD-PET and the reference SD-PET image.

o M5: Multi-channel GAN. M5 is similar to the GAN-based model
in Wang et al. (2018) that uses multi-channel input compris-
ing PET and multi-contrast MRI images, including diffusion-
weighted MRI. Because of the unavailability of diffusion-
weighted MRI images for our dataset, and for a fair comparison
with all the other methods, we use only the Tlw and T2w MRI
images for training. The model in Wang et al. (2018) employs a
anatomical-region-specific learnable 1 x 1 convolution layer to
produce a fused image that becomes the input to the generator
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of the GAN. We employ a 2.5D U-Net-based architecture for the
generator.

M1 and M2 focus on denoising and not on dose reduction. M3-
M5 propose to achieve DRFs in the range 4-200. DNNs M1, M3,
M4, M5, and suDNN employ similar U-Net-based backbone archi-
tecture with comparable number of parameters. On the other hand,
M2 employs a ResNet as described above, with significantly more
parameters compared to other DNNs. For all the DNNs that ne-
cessitate a training stage (M2-M5 and suDNN), we use the same
training-validation-testing split. The hyperparameters for all the
DNNs are tuned using the validation set. We trained all the DNNs
with a decaying learning rate for 500 epochs. In practice, we ob-
served that all the models converged within 300-400 epochs. For
each DNN, we selected the model that provided the best perfor-
mance (SSIM) on the validation set. For quantitative evaluation of
the quality of the predicted PET image, with respect to the refer-
ence SD-PET image, we use (i) peak SNR (PSNR) and (ii) structural
similarity index (SSIM) (Wang et al., 2004).

4.3. Out-of-distribution (OOD) data

For training all the DNNs discussed in this paper, we use the
training set of LD-PET images from a single cohort discussed in
Section 4.1. Primarily, we evaluate the performance of all the
methods on the testing set of LD-PET images. In a practical set-
ting, even with a fixed scanner and imaging protocol (i.e., the ac-
quisition schemes for MRI contrasts and the radiotracer used for
PET), various factors are contributing to OOD data, e.g., variation
in photon-count statistics due to slight variations in the injected
dose, physiological factors like body mass index (BMI), aging brain,
pathology. In addition to the above, several other factors can con-
tribute to OOD data, as described in Section 1. Hence, to evalu-
ate the generalizability of the proposed model, we provide a com-
prehensive evaluation on OOD data arising from several acquisi-
tion scenarios: (i) variation due to reduced photon counts (re-
duced SNR), (ii) variation due to patient motion, (iii) variation due
to pathology (Alzheimer’s disease) and age, and (iv) variation due
to PET and MRI data acquired using separate scanners or differ-
ent imaging protocols. We now discuss the above-mentioned OOD
datasets in detail.

00D data with variation in photon counts or SNR (OOD-
Counts). We generate OOD PET data by varying the photon counts
and the associated SNR in the sinogram space, followed by OSEM
reconstruction with post-reconstruction Gaussian smoothing. We
generate two additional sets of test data at increasing degradation
levels in the input LD-PET data, namely very low-dose (vLD-PET)
and ultra-low-dose (uLD-PET). We generate the OOD test set con-
sisting of vLD-PET and uLD-PET as follows.

We retrospectively (i) scale down the intensities in the LD-PET
image, (ii) forward-project the resulting scaled-down LD-PET image
using the sinogram operator S, (iii) introduce Poisson noise in the
sinogram domain on the projected image, and (iv) perform OSEM-
based reconstruction to get the input VLD-PET or uLD-PET image.
For forward projection of the LD-PET images, we use the projection
model from STIR (Thielemans et al., 2012) that is based on a ray-
tracing algorithm for the system geometry, which is similar to that
used in the Siemens PET-MRI system used in this study. The PSNR
value, averaged across the test set, between the reference SD-PET
image and LD-PET image was around 21 dB. To obtain vLD-PET and
uLD-PET, we scale the LD-PET images such that, after OSEM recon-
struction, the PSNR values, averaged across the test set, between
the reference SD-PET and vLD-PET image was around 17 dB; the
PSNR for the uLD-PET image was around 13 dB. That is, the PSNR
values for the set of uLD-PET images was around 0.66x that of the
LD-PET images. This variation in the PSNR values was motivated by
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Fig. 3. Qualitative evaluation of the methods for three different levels of degradation of the input PET data: LD-PET (row a), vLD-PET (rows b and c), and uLD-PET
(rows d and e). The ground-truth SD-PET along with the corresponding sinogram are shown in the topmost row. Panels (al-a2) show the input LD-PET, (b1-b2) vLD-PET, and
(d1-d2) uLD-PET sinograms and images; panels (a3-a8) the predicted images for all methods for LD-PET; panels (b3-b8) and (c1-c6) the predicted images and corresponding
residual images (with respect to SD-PET) for vLD-PET; panels (d3-d8) and (el-e6) the predicted images and corresponding residual images for uLD-PET as input; panels
(a9-b9) and (d9) the sinograms of the predicted images (panels (a8, b8, and d8)); and panels (c7) and (e7) show the residuals of the predicted sinograms in comparison to

the reference SD-PET sinogram.

the work in Watson et al. (2005) that gives an example where the
PET images’ mean SNR reduced by a factor of around 0.66 when
the patients’ body weight increased from around 60 kg to around
120 kg.

00D data from different imaging protocols (0OD-Protocol).
We use the dataset corresponding to the visual task experi-
ments used for functional PET analysis in Li et al. (2020) and
Jamadar et al. (2019). In brief, this dataset comprises Tlw MR,
T2w MR, and dynamic PET scans from six healthy subjects with
mean age 24.3 years and standard deviation 3.8 years, including
five females. The scanner and MRI structural imaging protocols
are the same as the data used for training all the DNN models
(Section 4.1). For PET, the scanning protocol involved bolus injec-
tion of 100 MBq of the radiotracer, which is significantly different
from the training data (described in Section 4.1). We consider the
reconstructed PET images using the entire list-mode data as the
reference PET image. We generated a lower-quality PET image (in-
put PET image) by using a part of the list-mode data such that the
PSNR value, averaged across the entire dataset, between the refer-
ence PET image and input image was around 24 dB.

00D data from motion artifacts (0OD-Motion). Here, we use
the dataset that is part of the study in Chen et al. (2019b). For
0OO0D-Motion, we use the data corresponding to "Motion Controlled
Study” from that study. [18-F] FDG PET and structural MRI (T1w
and T2w) data were acquired from a healthy volunteer. For FDG-
PET, a bolus of 110 MBq FDG was provided, and specific instruc-
tions pertaining to the head movement were provided at spe-
cific scan times. We consider the reconstructed images using the
(i) entire list-mode data and (ii) motion correction algorithm pro-

posed in Chen et al. (2019b) as the reference PET image. We
generated the lower-quality PET image (input PET image) by us-
ing part of the list-mode data. Importantly, we did not perform
any motion correction during or post-reconstruction. The PSNR
value averaged across the entire OOD-Motion dataset, between
the reference PET image and the input PET image, was around
19 dB.

00D data from ADNI (OOD-ADNI: Alzheimer’s Dementia;
cross-scanner; multi-site; aged population data). We obtain
a dataset from the Alzheimer’s disease neuroimaging initiative
(ADNI) database (Weiner et al., 2017), which is a well-known pub-
licly available dataset. We randomly selected data for 25 subjects
(mean age 77 years and standard deviation 10.1 years, including
9 females) categorized as follows. (i) normal aging (2 subjects),
(ii) early mild cognitive impairment (EMCI, 4 patients), (iii) mild
cognitive impairment (MCI, 4 patients), (iv) late mild cognitive im-
pairment (LMCI, 8 patients), and (v) dementia or AD (7 patients).
We obtained T1w, T2w, and [18-F] FDG PET images for all the sub-
jects mentioned above. The structural MRI images were acquired
on a 1.5T and 3T scanners using 3D MPRAGE for T1w and FLAIR for
T2w images with a resolution of Tmm? isotropic. All the PET im-
ages were obtained at a resolution of 1.01 x 1.01 x 2.02 mm?3. In
comparison, the LD-PET and SD-PET data from OOD-Counts used
for training the DNNs, were acquired on a 3T simultaneous PET-
MRI scanner with a resolution of 1 mm? isotropic for MRI and 2.09
x 2.09 x 2.03 mm3 for PET. We registered and resampled all the
PET and MRI images from the ADNI database to one of our train-
ing subjects to overcome differences in image resolution and image
matrix dimensions. For evaluation, we considered the provided re-
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constructed images as reference. We retrospectively generated the
degraded input images such that the PSNR value, averaged across
the OOD-ADNI test set, between the reference PET image and the
degraded input PET image was around 21 dB.

4.4. Evaluation: qualitative and quantitative

Figure 3 shows the predicted images from different methods
across three different variations of the LD-PET data for a repre-
sentative subject. The input PET images, i.e., LD-PET, vLD-PET, and
uLD-PET, appear in Fig. 3(a2), (b2), and (d2), respectively; the cor-
responding sinograms appear in Fig. 3(al), (b1), and (d1). The DIP-
based M1 (Fig. 3(a3), (b3), (d3)) denoises the input LD-PET image.
However, as expected, being unsupervised and with denoising as
its focus, it is unable to enhance the low counts and performs
poorly in predicting the FDG uptake in the reference SD-PET im-
age. Unlike M1, the ResNet-based M2 (Fig. 3(a4), (b4), (d4)) is de-
signed to predict the activity in the reference SD-PET image. How-
ever, even with the LD-PET input, it is unable to produce images
with accurate textural features because of several possible factors.
One factor is that M2’s design cannot leverage the information in
the MRI image. M2 relies on a standard ResNet architecture that
employs short-range skip connections compared to longer-range
hierarchically-designed skip connections in suDNN’s U-Net archi-
tecture. Methods M3 (Fig. 3(a5), (b5), (d5)) and M4 (Fig. 3(a6),
(b6), (d6)), which rely on predicting the residual images as output,
produce realistic SD-PET images when using LD-PET as the input.
However, when using vLD-PET and uLD-PET as inputs, both M3 and
M4 show some residual noise in the images despite reasonably
recovering the contrast and texture similar to the SD-PET image.
M4 improves over the loss in contrast shown by M3, emphasizing
the contribution of the multimodal MRI input. M5, which is GAN-
based, shows superior performance with LD-PET (Fig. 3(a7)), show-
ing little degradation (in terms of contrast and certain structures
like the sulci and gyri) with vLD-PET (Fig. 3(b7)), and does not pre-
dict the desired texture and contrast when using uLD-PET as input
(Fig. 3(d7)). On the other hand, our suDNN shows superior predic-
tion across varying input quality (Fig. 3(a8), (b8), (d8)). Compared
to other baselines, suDNN's results show more realistic texture and
contrast, and reduced magnitudes in the differences between the
predicted and the reference SD-PET images (Fig. 3(c6), (e6)). For
our suDNN, the sinograms of the predicted images (Fig. 3(a9), (b9),
(d9)) demonstrate little difference across OOD variations in input
image quality, which is in agreement with the quality of the pre-
dicted images obtained with different low-dose inputs. The resid-
ual images between the sinograms of the predicted images and
that of the reference image SD-PET corresponding to the inputs
vLD-PET and uLD-PET are shown in Fig. 3(c7)-(d7).

Figure 4 (a)-(b) show quantitative plots with PSNR and SSIM
values averaged over the 100 slices of every subject from the test
set in 3-fold cross validation (18 patients for training, 4 for valida-
tion, 6 for testing) for different kinds of PET image inputs, i.e., LD-
PET, vLD-PET, and uLD-PET. As the input quality degrades, all meth-
ods show a drop in performance. Nevertheless, our method shows
the most graceful degradation (around 3.5 dB with ulLD-PET). On
the other hand, the other methods show a severe loss in their per-
formance with uLD-PET, e.g., around 7 dB for M5, around 10 dB for
M4, and around 11 dB for M3. A similar trend can be observed in
the SSIM plot (Fig. 4(b)). While our method shows a degradation
of around 0.02 with uLD-PET as input as compared to LD-PET as
the input, other methods show a severe decrease in SSIM values
with uLD-PET, e.g., around 0.04 for M5, around 0.13 for M4, and
around 0.1 for M3. Thus, with LD-PET as input, the performance of
suDNN is comparable to M3-M5; nevertheless, as the input qual-
ity degrades, suDNN significantly outperforms all other methods
demonstrating substantially higher robustness/insensitivity to 00D
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Fig. 4. Quantitative evaluation of the methods for three different levels of
degradation of the input PET data: LD-PET, vLD-PET, and uLD-PET. (a) PSNR and
(b) SSIM values for the predicted PET images on 100 brain slices for each test set.
The plots depict performance on the test-set averaged over a 3-fold cross-validation
scheme.

data. We conducted paired t-test for SSIM and PSNR values for all
methods for the three low-dose inputs. The improvement using our
suDNN method was found to be statistically significant (p-value
« 0.001) in comparison to all other methods (M1-M5) at all in-
put quality levels (LD-PET, vLD-PET, and uLD-PET).

For the results corresponding to uLD-PET input in Fig. 3, we
carefully analyze the predicted images along with the input and
the reference PET images. The zoomed region of interest (ROI) in-
cludes the caudate, putamen, and thalamus. The caudate nucleus
shows hyperintensity in the SD-PET image (highlighted using the
white arrow in Fig. 5(a4)) that is not the case in the uLD-PET image
(Fig. 5(a3)-(b3)). The unimodal DNN M3 (Fig. 5(c1)-(d1)) severely
underestimates the uptake in the caudate and the thalamus re-
gions. Although our suDNN (Fig. 5(c4)-(d4)) provides the best esti-
mate of the predicted images, other multimodal DNN methods like
M4 and M5 (Fig. 5(c2)-(d2) and (c3)-(d3)) do show some recovery
of the hyperintensity in the caudate and thalamus regions com-
pared to M3. This demonstrates the importance of including the
MRI structural image in the input, where the results (Fig. 5(al)-
(b1) and (a2)-(b2)) distinctly show the subcortical nuclei in the
cerebrum.

Figure 6 shows the predicted PET images and residuals for
the models M3, M4, M5, and suDNN on three additional OOD
datasets OOD-Protocol, OOD-Motion, and OOD-ADNI. For OOD-
Protocol, while M3 (Fig. 6(a2)) shows under-estimation (compared
to the reference) in the entire brain region, M4 (Fig. 6(a3)) shows
increased activity across the entire brain. On the other hand,
suDNN (Fig. 6(a5)) closely matches the activity distribution across
brain regions without severe under- or over- estimation, yielding
the least residual magnitudes (Fig. 6(b4)). For OOD-Motion, un-
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like OOD-Protocol, both M3 and M4 (Fig. 6(c2) and (c3)) show in-
creased activation across the entire brain region and are also un-
able to recover certain anatomical structures (e.g., caudate nuclei).
Relatively, suDNN (Fig. 6(c5)) is able to closely match the activ-
ity distribution across brain regions. For OOD-ADNI too, suDNN
(Fig. 6(e5)) provides substantially improved images compared to
other methods (Fig. 6(e2)-(e4)) with the least residual magnitudes.
Across all the three OOD datasets, M5 (Fig. 6(a4, c4, and e4) and
(b3, 3, and f3)) is unable to recover certain subcortical structures.
Nevertheless, unlike M3 and M4, it does not suffer from severe
under- or over-estimation. Thus, across the three additional OOD
datasets discussed here, our proposed method (suDNN), shows re-
liable (i) activity estimation and (ii) anatomical structure restora-
tion compared to M3, M4, and M5.

Figures 7 (a)-(b) show quantitative plots with PSNR and SSIM
values for 100 slices of every subject for each of the three addi-
tional OOD datasets: OOD-Protocol, OOD-Motion, and OOD-ADNI.
The dotted lines in both the plots indicate the median PSNR and
SSIM values of suDNN evaluated on LD-PET dataset (part of OOD-
Counts) from Fig. 4. Across all the three OOD datasets, our method
performs significantly better (around 4 dB for OOD-Protocol, and
around 1.5 dB for OOD-Motion and OOD-ADNI) than M3, M4,
and M5. On OOD-Protocol, our method’s performance is compara-
ble to its corresponding performance on the LD-PET test data (in
0O0D-Counts). A similar trend can be observed in the SSIM plot
(Figs. 7(b)). While our method on OOD-Protocol shows comparable
SSIM values compared to LD-PET data in OOD-Counts, it shows a
slight degradation of around 0.1 and 0.2 for OOD-Motion and OOD-
ADNI, respectively.

4.5. Ablation studies: qualitative and quantitative

We perform an ablation study to analyze the contribution from
different components in the proposed DNN. To this end, consistent
with the prior works in this domain, we found that using a 2.5D-
input based training scheme provided substantially improved re-
sults in comparison to using 2D-only training. Moreover, as evident

Medical Image Analysis 73 (2021) 102187

from the results in Figs. 3-5, M3 and M4 that rely on predicting
the residual between the LD-PET and the SD-PET images, are not
robust to OOD acquisitions. Hence, to evaluate the importance of
multiple components in the proposed suDNN framework, we eval-
uate four other ablated versions of suDNN, i.e., suDNN-Ablated1,
suDNN-Ablated2, suDNN-Ablated3, and suDNN-Ablated4.

o suDNN-Ablated1: 2.5D unimodal U-Net. We define a
basic DNN that includes a U-Net architecture (similar
to Xu et al. (2017)) with a unimodal input, but with a
modified output such that it directly maps to the PET image
instead of estimating the residual between the input LD-PET
and the reference SD-PET image (as in M3). suDNN-Ablated1
is trained using the 2.5D scheme, penalizing the mean-squared
error in the image space, say £; (Y, USP), between the predicted
and the reference images.

suDNN-Ablated2: 2.5D multimodal U-Net. We modify the
DNN suDNN-Ablated1 by replacing the unimodal input with a
multimodal input including multi-contrast MRI images, retain-
ing the same loss function as suDNN-Ablated1.
suDNN-Ablated3: 2.5D multimodal U-Net with manifold loss.
In addition to the loss £;, this DNN includes a learned
manifold-based loss £g(Y,USP) similar to the perceptual
loss in Johnson et al. (2016) or the manifold-based loss
in Uddeshya and Awate (2019); thus, the total loss is £; + AgLE,
where the free parameter A € R™ controls the weight of the
loss term Lg. The learned-manifold based loss relies on learning
an autoencoder trained using the set of SD-PET images. The loss
function £g penalizes the differences between the encodings
obtained by applying the encoder ®¢ (from learned autoen-
coder) to the predicted PET and reference SD-PET images. That
is, Le(Y.USP; @) :=[|g(Y) — dg(USP)||2, where |- || repre-
sents the Frobenius tensor norm.

suDNN-Ablated4: 2.5D multimodal U-Net with physics-based
loss. Instead of the learned-manifold loss in suDNN-Ablated3,
suDNN-Ablated4 uses a sinogram-space loss Lg given as Lg :=
ISY — SﬁSDHﬁ. Thus, the total loss for suDNN-Ablated4 is £; +
AsLs, where Ag € R controls the strength of Ls.

The free parameters Ag and Ag are automatically tuned using
the validation set; in this paper, they take the values Ag = 0.002
and As = 0.003.

Figure 8 shows quantitative evaluation of the DNNs in the
ablation study for the input PET images LD-PET, vLD-PET, and
uLD-PET. Similar to the results in Fig. 4, DNNs with a multi-
modal input improve substantially over DNNs with unimodal input
(suDNN, suDNN-Ablated2, suDNN-Ablated3, and suDNN-Ablated4
better than suDNN-Ablated1). Inclusion of the learned manifold-
based loss Lg(-), in addition to the image space loss Li(.),
for suDNN-Ablated3 provides improved robustness over suDNN-
Ablated2 and suDNN-Ablated1. Further, suDNN-Ablated4 that in-
cludes a physics-based loss instead of the learned manifold-
based loss in suDNN-Ablated3 shows significant improvement over
suDNN-Ablated3 with vLD-PET and uLD-PET. Finally, the proposed
suDNN that models uncertainty in both image and sinogram space,
provides comparable performance to suDNN-Ablated4, but signifi-
cantly better than suDNN-Ablated1, suDNN-Ablated2, and suDNN-
Ablated3 at higher levels of degradation of the input. In addition
to providing improved accuracy and robustness to OOD data over
other methods, the predicted variance image C from the proposed
DNN can potentially be useful for quantifying the uncertainty in
the predicted images discussed in Section 4.6.

Figure 9 provides visual comparison of the output SD-PET im-
ages from the ablated suDNN versions suDNN-Ablated3, suDNN-
Ablated4, and the proposed suDNN, for the input PET images
(i) LD-PET, (ii) vLD-PET, and (iii) uLD-PET. For the LD-PET and
VvLD-PET inputs, the predicted PET images from suDNN-Ablated3
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Fig. 6. Qualitative evaluation of the methods for three additional types of OOD data: OOD-Protocol (rows a and b), 0OOD-Motion (rows ¢ and d), and OOD-ADNI (rows
e and f). Panels (a1, c1, and el) correspond to the input PET images, and (a6, c6, and e6) correspond to the reference PET images. Columns 2-5 show the predicted images
and residuals for the methods: M3 (column 2), M4 (column 3), M5 (column 4), and suDNN (column 5).

(Fig. 9(d1)-(d2)) are closer to that of suDNN-Ablated4 and suDNN
(Fig. 9(c1),(b1) and Fig. 9(c2),(b2)). However, suDNN-Ablated3
shows substantial degradation with uLD-PET as input (Fig. 9(d3)).
The outputs of suDNN-Ablated4 (Fig. 9(c1)-(c3)) are very similar
to that of suDNN (Fig. 9(b1)-(b3)). This emphasises that modeling
uncertainty in both the image space and the sinogram space, need
not hamper the image quality.

4.6. Utility of uncertainty maps

We now analyze the uncertainty maps produced by the pro-
posed suDNN with the inputs uLD-PET and LD-PET, and how to ex-
tract useful information from the same. For the input PET images
uLD-PET and LD-PET (Fig. 10(a1l) and (a4)), the network produces
the predicted images (Fig. 10(a2) and (a5), respectively), along with

10

the per-voxel variances C. For improved visualization, we show
the uncertainty maps, i.e., per-voxel square-root of the variance

maps, 0 = \/E(Fig. 10(a3) and (a6)). We define two global thresh-
olds to identify pixels with high uncertainty and high residual
magnitudes, i.e., threshold §y for the predicted uncertainty im-
age and threshold &g for the residual-magnitude image. That is,
voxel locations with residual-magnitude values r > &g indicate sub-
optimal reconstruction, and voxel locations with & > §y; indicate
predictions with high uncertainty. Subsequently, we threshold the
residual-magnitude image r and the uncertainty image & to get
two binary masks, namely, BM1 and BM2. We tune the values for
the global thresholds empirically to §g = 0.25 and &y = 0.03, re-
spectively. Finally, to improve the utility of the uncertainty maps,
we generate two quantification maps: (i) Q(c;r,8g) (Fig. 10(b2)
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and (b5)), obtained by applying the binary mask BM1 on &, and
(ii) Q3(0'; 8y) (Fig. 10(b2) and (b5)), obtained by applying the bi-
nary mask BM2 on &. As expected, the map Q; with the LD-PET in-
put has substantially fewer non-zero values, compared to the map
Q; obtained with uLD-PET as input. A similar trend is observed for
the map Q,. Thus, as expected, suDNN’s prediction from uLD-PET
as input shows higher uncertainty compared to its prediction from
LD-PET as input. Notably, the high-intensity values in the map Q1
agree with the high-intensity values in the map Q2; this implies
that regions with high residual magnitudes correspond to regions
with high uncertainty in the predicted images. In this way, the
map Q, (available at inference) might act as a proxy for the pre-
diction error (i.e., residual-magnitude map Q; that is unavailable at
test time) while inferring a PET reconstruction from test data.

5. Discussion and conclusion

This paper presents a novel sinogram-based and uncertainty-
aware DNN framework, namely, suDNN, for estimating SD-PET im-
ages from LD-PET images, and given the associated multi-contrast
MR], in simultaneous PET-MRI systems. Specifically, we learn the
mapping using LD-PET images associated with a DRF of 180 x, and
show that the learned mapping is robust to practical OOD degra-
dations in the data, i.e., PET data with further reduction in counts
leading to vLD-PET (10x) and uLD-PET (100x) images, which re-
alistically model the SNR variation of the OSEM-reconstructed PET
images in practical scenarios Watson et al. (2005).

Furthermore, given the trained model on LD-PET images, we
evaluated the performance on three additional OOD datasets cap-
turing variation in data due to several factors such as: FDG in-
fusion protocol and dose (OOD-Protocol), subject motion (OOD-
Motion), and age, pathology, multi-site, cross-scanner data acquisi-
tion (OOD-ADNI). Compared to several existing methods, empirical
evidence shows suDNN to be more robust (Figs. 3, 4, 6, and 7). Fur-
thermore, unlike other methods, suDNN models the per-voxel het-
eroscedasticity during learning and inference and, thereby provides
useful information about the uncertainty in the predicted images.
Improving the robustness of the learned DNN to effectively handle
a wide spectrum of OOD variations reduces the number of learned
DNN models required for deployment (for a particular combination
of a tracer and an anatomical region).

This is the first work, to the best of our knowledge, to include a
PET-physics based (sinogram domain) loss function for enhancing
LD-PET images. The ablation study (Fig. 8) shows that inclusion of
the physics-based transform-domain loss function improves the ro-
bustness to OOD data in the form of lower counts. This finding is
consistent with findings in undersampled MRI reconstruction that
show that modeling penalties in the transform/k-space domain im-
prove the performance of the DNN (Yang et al., 2017). This is also
the first work towards the modeling and quantification of the un-
certainty in the predicted SD-PET images from LD-PET images.

Evaluating the performance of suDNN as well as other state-
of-the-art DNNs showed that the unimodal (M3) and the multi-
modal (M4) residual-predicting U-Net DNNs are far less robust to
00D input data in the form of vLD-PET and ulLD-PET. Although,
with vLD-PET as input, the multimodal GAN-based M5 improves
over M3 and M4, it underestimates the SD-PET contrast with uLD-
PET as input. Unlike the empirical analysis in previous works that
employ test data and training data having well-matched distribu-
tions, we evaluate the robustness of all trained DNNs to OOD PET
acquisitions leading to lower photon counts (at test time). While
we train the DNN using LD-PET images and evaluate the learned
model on vLD-PET and uLD-PET images, one could also perform
similar studies by learning the DNN model at some other specific
level of image quality and evaluating the learned model at the re-
maining levels.
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Fig. 9. Results of DNNs in the ablation study with input PET images: LD-PET, vLD-PET, uLD-PET. Variations in input PET (a1)-(a4): LD-PET, vLD-PET, uLD-PET, respectively.
Predicted images using varying levels of PET input from: (b1)-(b3): suDNN, (c1)-(c3): suDNN-Ablated4, and (d1)-(d3): suDNN-Ablated3.
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Fig. 10. Utility of Uncertainty Maps; Columns 1-3: uLD-PET as input; Columns 4-6: LD-PET as input. (a1) and (a4): Input images uLD-PET and LD-PET. (a2) and (a5):

Predicted PET images Y. (a3) and (a6): Predicted per-voxel standard deviation image \/E (b1) and (b4): Image r showing magnitudes of per-voxel residuals in USP — Y. (b2),
(b5): Quantification map Q;(d;r,8r); (b3), (b6): Quantification map Q,(7; dy). We observe that the regions with large values in Q; are subsumed within region with large

values in Q. .

The use of multi-contrast MRI images as multi-channel input
(in M4, M5, and suDNN) provides a substantial improvement over
unimodal PET-only inputs (M2 and M3), which is consistent with
the findings of the other works for this problem (Wang et al., 2018;
Chen et al., 2019a).

The evaluation study on the three additional OOD datasets
showed that even without additional training with the new data,
our model is able to better adapt to restore structures and activity
distribution both. For the OOD data arising from the same imag-
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ing center, with variations in PET (e.g., due to counts, population,
subject motion, reconstruction pipeline), but retaining the same
MRI contrasts (Tlw MRI and T2w MRI), the predicted PET im-
ages closely matched the reference PET images. However, for better
generalizability spanning across scanners, imaging protocol, differ-
ences in PET radiotracer infusion protocol, as in the case of O0OD-
ADNI dataset, performance of all DNN models can be improved by
further training of the pre-trained DNNs using a few samples from
the newer imaging sites.
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Fig. 11. Feature maps obtained from initial layers of the proposed network with
unimodal (PET only) and multimodal inputs (PET and multi-contrast MRI both).
Example 6 feature maps (out of 64) selected at the output of the second layer of
the DNN are shown. Feature maps have been normalized for better comparison be-
tween the unimodal and the multimodal case.

Furthermore, the ablation studies (Figs. 8 and 9) show that
DNNs that include multimodal inputs as well as transform-domain
losses (e.g., manifold loss or sinogram loss) produce better out-
puts even with reduced counts in the PET images. The results
in Fig. 9 also emphasize the importance of the information from
the PET images for improved accuracy. For DNN models that em-
ploy multimodal input (in suDNN and other works), e.g., including
multi-contrast MRI as input, the non-PET modalities help improve
the prediction by infusing reliable information in the form of inter-
modality statistical dependencies. In this context, to retain the in-
terpretation of PET imaging as quantitative imaging, a recalibration
mechanism based on relative reduction in activity (Ouyang et al.,
2019) may be needed, which is a part of our future work.

To analyze the contribution of the multimodal inputs in com-
parison to the unimodal (PET-only) inputs, we visualize the fea-
ture maps obtained from an initial layer (second layer) of the DNN,
trained with unimodal and with multimodal inputs, while main-
taining the same network architecture. Fig. 11 shows that the fea-
ture maps obtained using the multimodal inputs show anatomi-
cal features more clearly, compared to the unimodal case, as ex-
pected. We demonstrated the potential utility of the generated un-
certainty maps (Fig. 10) by defining global thresholds in terms of
residual magnitude and uncertainty values obtained in the exper-
iments. Future work calls for defining these thresholds in terms
of physically meaningful values. There could be other approaches
such as in Gal and Ghahramani (2016) that model dropout within
a variational-learning framework for uncertainty estimation, which
may result in non-trivial extensions and modifications of the pro-
posed suDNN framework. However, studying such approaches is
beyond the scope of this work.

Some aspects of the analysis within this paper can improve
in future works. First, suDNN uses a 2.5D-style input instead of
full 3D volumes. In the future, we plan to accommodate train-
ing using 3D images, which requires handling of a 3D system ma-
trix, demanding high computational power. Second, in addition to
the quantitative performance metrics such as PSNR and SSIM, for
clinical acceptance, perceptual scores provided by radiologists, as
in Sanaat et al. (2020), Chen et al. (2019a), can provide insights.
Third, although suDNN shows robustness to OOD data by produc-
ing qualitatively superior PET images even with uLD-PET, a re-
calibration mechanism may benefit clinical interpretation towards
quantitative imaging. Finally, while the size of the dataset used in
this paper is larger than those used in the publications involving
the baseline methods (M1-M5), we plan to evaluate the proposed
method on multiple cohorts, including covering healthy and patho-
logical conditions.

In summary, our suDNN framework, informed by
the underlying imaging physics and that models uncer-
tainty/heteroscedasticity, achieves a more robust mapping from
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ulLD PET images (including the multi-contrast MRI) to SD-PET
images. suDNN demonstrates robustness to unseen OOD PET
acquisitions and provides an estimate of the underlying uncer-
tainty of the prediction, which facilitates a new paradigm of risk
assessment in the application of DNNs to low dose PET image
reconstruction. The method has the potential to dramatically
improve the utility of uLD PET imaging in diagnostic imaging,
therapeutic monitoring, and drug development research in on-
cology, neurology, and cardiology. Physics-inspired DNN-based
reconstruction of low-dose PET scans has the potential to substan-
tially expand the use of PET in longitudinal studies and imaging
of radiation-sensitive populations, including children and pregnant
women.
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