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a b s t r a c t 

Radiation exposure in positron emission tomography (PET) imaging limits its usage in the studies of 

radiation-sensitive populations, e.g., pregnant women, children, and adults that require longitudinal imag- 

ing. Reducing the PET radiotracer dose or acquisition time reduces photon counts, which can deteriorate 

image quality. Recent deep-neural-network (DNN) based methods for image-to-image translation enable 

the mapping of low-quality PET images (acquired using substantially reduced dose), coupled with the 

associated magnetic resonance imaging (MRI) images, to high-quality PET images. However, such DNN 

methods focus on applications involving test data that match the statistical characteristics of the training 

data very closely and give little attention to evaluating the performance of these DNNs on new out- 

of-distribution (OOD) acquisitions. We propose a novel DNN formulation that models the (i) underlying 

sinogram-based physics of the PET imaging system and (ii) the uncertainty in the DNN output through the 

per-voxel heteroscedasticity of the residuals between the predicted and the high-quality reference images. 

Our sinogram-based uncertainty-aware DNN framework, namely, suDNN, estimates a standard-dose PET 

image using multimodal input in the form of (i) a low-dose/low-count PET image and (ii) the correspond- 

ing multi-contrast MRI images, leading to improved robustness of suDNN to OOD acquisitions. Results on 

in vivo simultaneous PET-MRI, and various forms of OOD data in PET-MRI, show the benefits of suDNN 

over the current state of the art, quantitatively and qualitatively. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

Positron emission tomography (PET) is a molecular imaging 

echnique that is vital in diagnosis, disease monitoring, therapy, 

nd drug development in various pathologies in oncology, neurol- 

gy, and cardiology as discussed in Chen et al. (2018) . The ioniz- 

ng radiation involved in PET is a cause of concern in radiation- 

ensitive populations including pregnant women, children, and 

dults that require longitudinal imaging ( Vogelius and Shah, 2017 ). 

he quality of the reconstructed image depends on the number 

f acquired photon counts ( Oen et al., 2019 ), where higher counts 

ead to a higher signal-to-noise ratio (SNR). In current applications, 

owering the radioactive dose while maintaining a sufficient num- 

er of counts for acceptable image quality leads to an increase 
� The authors V. P. Sudarshan and U. Upadhyay contributed equally. 
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n scan time per bed position. This can increase patient discom- 

ort and imaging artifacts (e.g., motion-related) and reduce scan- 

er throughput. Aligning with the principle of “as low as rea- 

onably achievable” ( Voss et al., 2009 ), reduced dose can poten- 

ially encourage pre-natal studies (e.g., ( Jones and Budinger, 2013 )), 

arly detection of brain disorders at pre-symptomatic stages 

e.g., Mosconi et al. (2010) ). Furthermore, the ability to handle low- 

ount data can enable applications in dynamic imaging regimes, 

.g., functional PET imaging as shown in Jamadar et al. (2019) , 

udarshan et al. (2021) , Li et al. (2020) that relies on a continuous 

nfusion of the radiotracer, where the number of photon counts 

vailable per timeframe is substantially lower compared to con- 

entional static PET imaging. Hence, there is a need to achieve 

ET imaging at low doses or low photon counts without compro- 

ising image quality. Thus, we propose a framework to predict a 

tandard-dose PET image from the multimodal input in the form of 

i) a low-count PET image and (ii) the corresponding multi-contrast 

agnetic resonance imaging (MRI) images acquired during simul- 

aneous PET-MRI. 

https://doi.org/10.1016/j.media.2021.102187
http://www.ScienceDirect.com
http://www.elsevier.com/locate/media
http://crossmark.crossref.org/dialog/?doi=10.1016/j.media.2021.102187&domain=pdf
mailto:suyash@cse.iitb.ac.in
https://doi.org/10.1016/j.media.2021.102187
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Recent deep neural network (DNN) based methods for image- 

o-image translation enable the mapping of low-quality PET im- 

ges (acquired using substantially reduced dose), coupled with 

he associated MRI images, to high-quality PET images (e.g., 

u et al. (2017) , Chen et al. (2019a) , Xiang et al. (2017) ,

ang et al. (2018) ). However, current DNN methods focus on ap- 

lications involving test data that match the statistical character- 

stics of the training data closely, and give little attention to eval- 

ating the performance of these DNNs on new out-of-distribution 

OOD) acquisitions that differ from the distribution of images in 

he training set. In the general context of PET imaging, OOD PET 

ata could arise from several underlying factors, e.g., variations in 

adiotracers, anatomy, pathology, photon counts, hardware, recon- 

truction protocol. It is unlikely that a single learning-based model 

aters to all these OOD scenarios. To deal with various OOD scenar- 

os, for a fixed tracer and anatomical region, a good design choice 

s to rely on the minimum number of DNN models; e.g., this allevi- 

tes the complexity of selecting one among multiple learned mod- 

ls to process the data for a new subject. Therefore, any learned 

NN model should be robust across a broad spectrum of OOD 

ariations. This paper focuses on the robustness to OOD data that 

orresponds to variation in the quality and characteristics of the 

ET data. For instance, the number of counts available for recon- 

tructing the PET images shows a wide variation depending on 

everal factors as mentioned above, including the clinical/scientific 

pplication, even for a fixed tracer and anatomical region. Typ- 

cal PET scans involve photon counts (coincident events) across 

 wide range of 10 6 to 10 9 counts ( Cherry and Dahlbom, 2006 )

ith adjusted radiotracer dose for populations under increased ra- 

iation risk, e.g., children and young adults. As another example, 

he per-voxel photon counts also depend on patient-related fac- 

ors such as body-mass index (BMI) and age ( Karakatsanis et al., 

015 ). For subjects with higher BMI, while certain studies (e.g., 

hang et al. (2011) , Watson et al. (2005) ), suggest increasing the 

ose, other studies suggest increasing the scan time; while longer 

cans reduce patient comfort and scanner throughput, a significant 

ncrease in the dose may have undesirable side effects. Other fac- 

ors causing variations in data include: differences in age, differ- 

nces in imaging protocols, subject motion, and pathology. Such 

ariations in the data lead to changes in image features such as 

tructure, texture, contrast, and artifacts. 

In the context of medical image analysis, while several works 

ocus on improving the accuracy of the developed models, 

here is limited focus on addressing the uncertainty involved 

n interpreting the predicted outputs. Several works have de- 

igned DNNs to model distributions as the outputs of their in- 

ermediate and/or final layers (e.g., Srivastava et al. (2014) , 

al and Ghahramani (2016) ). Later works have leveraged such 

NN-modeling schemes for uncertainty modeling and estimation, 

e.g., Kendall and Gal (2017) , Lakshminarayanan et al. (2017) ). 

ecent works show that modeling uncertainties can improve 

he robustness of the DNN models for tasks like segmentation 

nd regression, (e.g., Jungo et al. (2018) , Wang et al. (2019) , 

aumgartner et al. (2019) ). In a similar way, modeling the per- 

oxel heteroscedasticity of the residuals between predicted and ref- 

rence images can improve the learned model to better adapt 

o the variability across real-world datasets. Exposing this het- 

roscedasticity as the per-voxel uncertainty in the predicted im- 

ges, which allows the learned DNN to output a distribution of PET 

mages, may potentially aid in clinical interpretation ( Nair et al., 

020; Wang et al., 2019 ). DNNs that do not inform about the pre-

icted images’ underlying risk can lead to misleading outputs, es- 

ecially when presented with OOD data. Thus, we propose a mod- 

ling and learning strategy that is aware of this uncertainty in the 

redicted outputs. Several DNN learning methods show the bene- 

ts of transform-domain loss functions during learning, where the 
2 
ransform domain refers to a manifold or feature space obtained 

rom transforming the images (both predicted and ground truth). 

n example of transform-domain loss is the k-space-domain loss 

mployed for undersampled MRI image reconstruction ( Yang et al., 

017 ). In the same way, we propose a transform-domain loss that is 

otivated by the physics of the image acquisition process, where 

he transform domain is the sinogram domain for PET imaging. Our 

inogram-based uncertainty-aware DNN, namely, suDNN, frame- 

ork predicts a standard-dose PET (SD-PET) image from the mul- 

imodal input in the form of (i) a low-count PET image (being 

ow quality) and (ii) the corresponding multi-contrast MRI images, 

eading to improved robustness of the learned DNN model to OOD 

cquisitions. By designing the DNN input as a combination of the 

ow-count PET image and the multi-contrast MRI, our framework 

everages aspects of learning relating to both image quality en- 

ancement and inter-modality image-to-image translation. 

This paper makes several contributions. We propose a DNN 

ramework to predict a standard-dose PET image from the mul- 

imodal input in the form of (i) a low-count PET image and 

ii) the corresponding multi-contrast MRI images acquired dur- 

ng simultaneous PET-MRI. We propose a novel DNN formulation 

hat models (i) the underlying sinogram-based physics of the PET 

maging system and (ii) the uncertainty in the predicted output 

hrough the per-voxel heteroscedasticity of the residuals between 

redicted and reference images. Compared to the current state of 

he art, our sinogram-based uncertainty-aware DNN framework, 

amely, suDNN, leads to improved robustness to OOD acquisitions 

s shown by quantitative and qualitative evaluations on in vivo si- 

ultaneous PET-MRI. This paper focuses on PET-MRI of the human 

rain using the [18-F] fluorodeoxyglucose (FDG) radiotracer. 

. Related work 

Current systems for simultaneous PET-MRI typically require 

ong acquisition times (around 20 min) for multi-contrast MRI 

cans, thereby leading to PET scans of equivalent duration. The 

ong acquisition time enables lower-dose PET imaging in com- 

arison to typical systems acquiring PET and X-ray computed to- 

ography (PET-CT) ( Karakatsanis et al., 2015 ). However, with an 

ncreasing emphasis on reducing the acquisition time in MRI, 

ithin simultaneous PET-MRI, e.g, works in Ehrhardt et al. (2014) , 

udarshan et al. (2020, 2019) , it is important to enable PET imag- 

ng with reduced scan times or reduced photon counts (per bed 

osition). Prior works on PET image enhancement can be classi- 

ed into: (i) regularized reconstruction techniques from acquired 

ET data and (ii) post-reconstruction techniques without and with 

earning-based approaches. 

Regularized PET reconstruction methods: These refer to mod- 

ling prior knowledge, e.g., using total variation (TV) as in 

awatzky et al. (2008) or anatomical information from the co- 

egistered MRI image within the PET reconstruction routine as 

n Leahy and Yan (1991) , Nuyts (2007) , Schramm et al. (2018) . Re-

ently, ( Sudarshan et al., 2018; 2020 ) showed that a joint dictio- 

ary model for both PET and MRI images shows improved robust- 

ess to noise-level perturbations in the PET images. However, that 

ork focused on improving the noisy PET images and not on the 

eduction of radiotracer dosage levels. Kim et al. (2018) employ a 

NN to improve PET image quality within the iterative PET recon- 

truction framework to achieve a dose reduction factor (DRF) of 

round 6 ×. However, in many use cases, the raw list-mode data is 

ither unavailable or entails complex mathematical models for ac- 

urately modeling the details of the scanner physics and measure- 

ent errors. Hence, there is interest in post-reconstruction meth- 

ds for image quality enhancement. 

Post-reconstruction image quality enhancement without 

earning-based models. Most commonly, this involves Gaussian 
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ltering the reconstructed PET image. Improvements over the post- 

econstruction Gaussian-smoothing approach come from meth- 

ds that use higher-order statistical models for the PET image 

e.g., Bagci and Mollura (2013) , Dutta et al. (2013) ). Improve- 

ents also come from joint modeling of dependencies across co- 

egistered PET and MRI images as shown in Song et al. (2019) . Re-

ently, Cui et al. (2019) propose an unsupervised model for PET im- 

ge denoising by employing a conditional deep image prior (DIP) 

hat uses the subject’s anatomical MRI or CT as the input to the 

NN mapping. These methods focus on denoising, instead of deal- 

ng with smaller radiation doses. 

Post-reconstruction image quality enhancement with 

earning-based models. Recent works like ( Uddeshya and Awate, 

019; Masutani et al., 2020; Qiu et al., 2020; Upadhyay and Awate, 

019 ) have shown successful application of DNN based methods 

or image-quality enhancement. In the context of PET quality 

nhancement, some early works ( Kang et al., 2015; Wang et al., 

016 ) show that learning-based approaches, e.g., regression forests 

nd sparse dictionary modeling, can synthesize SD-PET images 

rom LD-PET images at a DRF of around 4 ×. For a similar DRF, 

i) Xiang et al. (2017) propose a DNN that uses an auto-context 

trategy to estimate patches in the SD-PET image based on the 

atches in the input set of LD-PET and T1w MRI images and 

ii) Wang et al. (2018) employ a generative adversarial network 

GAN) framework, where the input to the generator is a fused 

ersion of the multi-contrast MRI images and the LD-PET image. 

 Gong et al., 2018 ) uses a ResNet architecture to learn a mapping

rom the noisy LD-PET image to the SD-PET image (without any 

ose reduction), where the training includes a VGG-based loss 

erm. Recent pioneering work by Xu et al. (2017) shows that it 

s possible to achieve a DRF of around 200 × using a DNN to 

ap the residual between the LD-PET image and the reference 

D-PET image, where the DNN uses an 2.5D-style input to mimic 

olumetric mapping using a lighter and computationally cheaper 

odel. Subsequently, Chen et al. (2019a) shows that, with a 

imilar architecture and training strategy, including MRI images as 

nput produced better image quality than using PET images alone. 

 slightly different strategy by Sanaat et al. (2020) shows that 

earning a mapping between the LD-PET sinogram and the SD-PET 

inogram can lead to some improvement in the reconstructed 

D-PET images, compared to the strategy of learning the mapping 

rom LD-PET to SD-PET in the spatial image domain. However, 

s mentioned earlier, the measured raw sinogram data might be 

ither unavailable or lead to complex models for direct integration 

nto the DNN framework. On the other hand, linear models of 

he scanner-specific sinogram transformations are readily avail- 

ble, constructed using the knowledge of scanner geometry (e.g., 

an et al. (2004) ). The retrospectively estimated sinogram data can 

odel reasonably well the acquired sinogram data obtained after 

ypical error-correction steps applied to the PET raw data. 

The prior works discussed in this section employ loss func- 

ions either exclusively in the spatial domain or exclusively in 

he sinogram domain, but not both. Several DNN-based meth- 

ds for undersampled MRI reconstruction have shown that in- 

luding a transform-domain (k-space) loss function in addition 

o the spatial-domain loss function can improve the quality 

f reconstructed images at higher undersampling levels (e.g., 

chlemper et al. (2017) and Yang et al. (2017) ). Second, the prior 

orks, including those for PET and MRI reconstruction, do not 

valuate the models for robustness to OOD data in new acqui- 

itions, which are essential for clinical translation. Third, typical 

ET reconstruction methods seldom quantify the uncertainty in 

he DNN output. Modeling uncertainty in DNNs can potentially 

i) inform the radiologist about the imperfections in reconstruc- 

ions, which may aid in clinical decision making or subsequent 

utomated post-processing of reconstructed images, and (ii) pro- 
3 
ide improved performance when the DNN is presented with OOD 

ata. Early influential work in Hinton et al. (2012) showed that 

he performance of DNNs can be improved by employing dropout- 

ased regularization to reduce the problem of co-adaptation dur- 

ng learning. Subsequently, work in Gal and Ghahramani (2016) , 

al et al. (2017) provided a Bayesian interpretation of dropouts 

ithin a variational learning framework and used it to estimate 

odel-related uncertainty. In the works by Hinton et al. (2012) , 

rivastava et al. (2014) the dropout probability was a tunable free 

arameter. On the other hand, in the later works by Gal and 

hahramani (2016) , Gal et al. (2017) , the dropout probability pa- 

ameter was a hidden variable within the learning framework. 

ore recent work in Kendall and Gal (2017) improved uncer- 

ainty model that quantifies both model-related and data-related 

ncertainty. The uncertainty-related works discussed above pro- 

ose to estimate the uncertainty in the outputs, during train- 

ng and testing phases, using stochastic layers in the DNN archi- 

ecture. In the context of medical image analysis, recent works 

ike Jungo et al. (2018) , Wang et al. (2019) , Jungo and Reyes (2019) ,

aumgartner et al. (2019) , Nair et al. (2020) discuss the uncer- 

ainty estimation for medical image segmentation, and other works 

ike ( Tanno et al., 2021; Sentker et al., 2018; Armanious et al., 

021 ) discuss uncertainty estimation for various medical image re- 

ression tasks such as image enhancement for diffusion MRI, image 

egistration, and biological age estimation using MRI, respectively. 

Our novel DNN framework, (i) leverages the underlying physics 

f the PET imaging system and (ii) models the uncertainty in the 

NN output through the per-voxel heteroscedasticity of the resid- 

als between the predicted and the high-quality reference images. 

ur results on a cohort of 28 subjects with in vivo PET-MRI acquisi- 

ion demonstrate (i) improved quality of the reconstructed images 

nd (ii) improved robustness of the learned model in reconstruct- 

ng OOD PET data as compared to state-of-the-art methods. Addi- 

ionally, compared to state of the art, we show that our proposed 

odel is robust to OOD data arising from other factors such as dif- 

erences in imaging protocol on another cohort, motion artifacts, 

ge, pathology, inter-scanner variability, as detailed in Section 4 . 

. Methods 

We describe suDNN’s mathematical formulation, architecture, 

nd the training strategy, for estimating SD-PET images using the 

ultimodal input data. 

.1. suDNN modeling 

Let random fields U 

LD and U 

SD model the acquired LD-PET 

nd SD-PET images, respectively, across the population. Let ran- 

om fields V T1 and V T2 model the acquired T1w and T2w MRI 

mages, respectively. For each subject, the PET and MRI images 

 U 

LD , V T1 , V T2 , and U 

SD ) are spatially co-registered to a common

oordinate frame, where each image contains K voxels. We pro- 

ose to learn the suDNN by relying on a multimodal image-to- 

mage translation framework incorporating a dropout-based statis- 

ical model, for improved regularization during learning, involv- 

ng a Bernoulli random variable B(p) with parameter p as de- 

cribed in Tompson et al. (2015) . Thus, our framework takes 

s input the random-field triplet X := { U 

LD , V T1 , V T2 } and maps

t to output (i) a distribution on the possible SD-PET images 

ssociated with the input X , along with (ii) a distribution on 

he possible per-voxel variances of the (heteroscedastic) resid- 

als associated with the predicted SD-PET images, the square 

oot of which can also be interpreted as the per-voxel uncer- 

ainties associated with the predicted SD-PET images. Thus, the 

uDNN models a stochastic regressor �(·;�, B(p)) , parameterized 

y weights � and the dropout-probability parameter p, such that 
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Fig. 1. Proposed suDNN Framework . The inputs X to suDNN are: (i) the low-dose/count PET image U LD and (ii) the multicontrast MRI images V T1 and V T2 , incorporating 

the 2.5D-style training scheme. The suDNN models the mapping �(·; θB , θY , θC , B(p)) := (ψ 

Y (ψ 

B (·; θB , B(p)) ; θY ) , ψ 

C (ψ 

B (·; θB , B(p)) ; θC )) , where ψ 

B (·; θB , B(p)) denotes a 

common backbone feeding into two disjoint heads ψ 

Y (ψ 

B (·; θB ,B(p)) ; θY ) and ψ 

C (ψ 

B (·; θB , B(p)) ; θC ) . The θ· variables denote the parameters of each component. B(p) is a 

Bernoulli random variable, with parameter p, modeling the dropout. The suDNN outputs are: (i) the high-quality PET image modeled by random field ̂  Y and (ii) the random 

field ̂  C modeling the per-voxel variances in the residuals between the predicted image and the reference SD-PET image U SD . 
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(X;�, B(p)) := ( ̂  Y p , ̂  C p ) , where ̂ Y p and 

̂ C p characterize distribu- 

ions on the SD-PET images and on their associated per-voxel un- 

ertainties, respectively. In this way, ̂ Y p and 

̂ C p are also stochas- 

ic outputs where the stochasticity stems from the underlying 

ropout layer involving parameter p, as detailed in the next para- 

raph. suDNN learns the regressor using the training set T := 

 X i ∪ U 

SD 
i 

} N 
i =1 

comprising images from N subjects. Fig. 1 shows our 

uDNN framework. 

We propose a DNN model that is based on a U-Net archi- 

ecture ( Ronneberger et al., 2015 ). The proposed suDNN differs 

rom the standard U-Net by incorporating: (i) multimodal input 

here the data from the PET, T1w MRI, and T2w MRI images are 

reated as different channels, (ii) a 2.5D-style (similar to the strat- 

gy in Chen et al. (2019a) ) where the estimation of a particular 

lice in the SD-PET image takes as input, from each modality, a 

ollection of slices in the neighborhood, (iii) a dual-head output 

 Fig. 1 ), where the output from one DNN head represents the pre-

icted SD-PET images, and the output from the other head repre- 

ents the per-voxel variances modeling the variability in the pre- 

icted SD-PET images, inspired by Kendall and Gal (2017) , and 

iv) a dropout model ( Srivastava et al., 2014 ), following its bottle- 

eck layer, for regularization during learning. Specifically, suDNN 

odels the mapping 

(·; θB , θY , θC , B(p)) := (ψ 

Y (ψ 

B (·; θB , B(p)) ; θY ) , 

ψ 

C (ψ 

B (·; θB ,B(p)) ; θC )) , (1) 

here a single convolutional backbone represented by 

 

B (·; θB ,B(p)) , parameterized by θB and the Bernoulli ran- 

om variable B parameterized by p, feeds the resulting latent 

eatures to the two disjoint output heads, i.e., one for repre- 

enting the predicted images denoted by the mapping ψ 

Y (·; θY ) 

nd the other for representing the variance images denoted by 

he mapping ψ 

C (·; θC ) . Thus, for a given multimodal input X

nd the set of parameters � := θB ∪ θY ∪ θC , the suDNN outputs 
 

 p := ψ 

Y (ψ 

B (X; θB ,B(p)) ; θY ) and 

̂ C p := ψ 

C (ψ 

B (X; θB ,B(p)) ; θC ) . 

.2. Uncertainty-aware and physics-based loss functions 

A mean squared error (MSE) loss function between the DNN- 

utput PET image ̂  Y p and the high-quality PET image U 

SD assumes 

omoscedasticity of the per-voxel residuals, which may turn out 

o be a gross approximation in general, and especially so in the 

ontext of OOD data. Thus, we propose a loss function that ex- 

licitly adapts to the heteroscedasticity of the per-voxel residuals 

etween the output PET image ̂ Y p and the high-quality PET im- 

ge U 

SD . Our empirical evaluation (later) shows that such a model 
4 
eads to the robustness of the learned model to OOD PET test 

ata. Thus, for each subject, we model the output of suDNN as a 

air consisting of (i) the predicted SD-PET images ̂ Y p and (ii) the 

mages ̂ C p modeling the per-voxel variances in the residuals be- 

ween the predicted images and the reference SD-PET image. An 

lternate interpretation for the values in 

̂ Y p and 

̂ C p stems from 

he notion of a DNN that outputs a family of images modeled 

y a Gaussian distribution, where ̂ Y p models the per-voxel means 

nd 

̂ C p model the per-voxel variances. We find that incorporating 

his uncertainty-aware (or heteroscedasticity-based) loss leads to 

mproved robustness to OOD acquisitions. Thus, we propose loss 

unctions that enforce similarity in two domains, i.e., (i) the spa- 

ial domain and (ii) the sinogram domain modeling the PET de- 

ector geometry. We find that incorporating the transform-domain 

sinogram-domain) loss and modeling the per-voxel heteroscedas- 

icity in both domains make our model robust to OOD acquisitions. 

he overall loss function of the suDNN, L SU , is a weighted combi- 

ation of two loss functions, i.e., (i) uncertainty-aware loss in the 

mage space L U and (ii) uncertainty-aware PET-physics-based loss 

n the sinogram space L S . 

Uncertainty-Aware Spatial-Domain Loss L U . For input image 

 i , let ̂ Y pi [ k ] represent the k th voxel in the spatial domain for the 

 th predicted image ̂ Y pi , and let ̂ C pi [ k ] represent the k th voxel for 

he i th predicted variance image ̂ C pi . We employ a Gaussian like- 

ihood model for the observed image U 

SD 
i 

in the image space, pa- 

ameterized by per-voxel means in 

̂ Y pi = ψ 

Y (ψ 

B (X i ; θB ,B(p)) ; θY ) 

nd per-voxel variances in ̂

 C pi = ψ 

C (ψ 

B (X i ; θB ,B(p)) ; θC ) . Thus, the 

egative of the log-likelihood function leads to the loss over the 

raining-set T as 

 U (�; T ) := 

N ∑ 

i =1 

K ∑ 

k =1 

E P B(p) 

[ ( ̂  Y pi [ k ] − U 

SD 
i 

[ k ]) 2 

̂ C pi [ k ] + ε
+ log ( ̂  C pi [ k ] + ε) 

] 
, 

(2) 

here ε ∈ R 

+ is a small constant for numerical stability. Here, N

enotes the number of training samples, K the number of vox- 

ls in each image, and E P B(p) 
represents expectation under the 

ernoulli probability distribution characterizing B(p) . The above 

ethod of modeling uncertainty in the spatial domain is simi- 

ar to Kendall and Gal (2017) . Equation (2) consists of two com- 

onents: (i) the per-voxel squared residual/error ( ̂  Y pi [ k ] −U 

SD 
i 

[ k ]) 2 

caled down by the variance ̂ C pi [ k ] , and (ii) the penalty term 

og ( ̂  C pi [ k ] + ε) on the per-voxel variance ̂ C pi [ k ] , which penalizes 

arge values of ̂ C pi [ k ] . We enforce positivity on the elements of the

uDNN outputs ̂  Y pi using ReLU activation function in the final layer 
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Fig. 2. suDNN Architectural Details. The numbers adjoining the blue boxes indi- 

cate the number of feature maps obtained at that stage. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version 

of this article.) 
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f the head modeling ψ 

Y . We enforce positivity of ̂ C pi by employ- 

ng an exponentiation layer as the final layer of ψ 

C . suDNN learn- 

ng does not require explicit supervision in the form of ground- 

ruth observations for ̂ C pi , but rather learns to map to ̂ C pi using the 

oss in Eq. (2) using the SD-PET image data U 

SD . 

Uncertainty-aware Sinogram-Domain Loss L S . Let operator S
odel the linear sinogram transformation associated with PET im- 

ge acquisition for each transaxial slice. The operator S takes a 2D 

mage with K voxels and produces a sinogram with L discrete ele- 

ents. Because we model the per-voxel residual ( ̂  Y pi − U 

SD 
i 

) in the 

patial domain by a Gaussian distribution, the per-element residual 

n the sinogram domain also follows a Gaussian distribution. Simi- 

arly, given that ̂ C pi models the heteroscedasticity of the Gaussian- 

istributed residuals across the voxels in the spatial domain, we 

ropose to model the distribution of the residuals in the sino- 

ram domain as a factored multivariate Gaussian (one factor per 

lement), with the per-element variances of the sinogram-domain 

esidual S ̂  Y pi − SU 

SD 
i 

being S ̂  C pi . For simplicity, we exclude mod- 

ling the covariances between the per-voxel residuals in the sino- 

ram domain resulting from the dependencies introduced by the 

inogram operator S . Thus, we propose a physics-based loss term 

n the sinogram domain as 

 S (�; T ) : = 

N ∑ 

i =1 

L ∑ 

l=1 

E P B(p) 

[ (S ̂  Y pi [ l] − SU 

SD 
i 

[ l]) 2 

S ̂  C pi [ l] + τ
+ log (S ̂  C pi [ l] + τ ) 

] 
,

(3) 

here τ ∈ R 

+ is a small constant for numerical stability. 

Overall Loss Function L SU . We propose to optimize the set of 

arameters � of our DNN by minimizing the overall loss function 

onsisting of uncertainty-aware loss functions in both the image- 

pace and the sinogram-space given by 

 SU (�; T ) := L U (�; T ) + λL S (�; T ) , (4) 

here λ is a non-negative real-valued free parameter that con- 

rols the weight of the physics-based sinogram-domain loss. In this 

ork, we tune the value of λ using a validation set. 

.3. DNN architecture and learning strategy 

Figure 2 shows the details of the suDNN architecture. We 

mploy a U-Net architecture comprising an encoder and a de- 

oder that have a symmetric structure, and incorporate skip con- 

ections from the encoder to the decoder. Both the encoder 

nd decoder comprise three convolutional blocks. The downsam- 

ling/upsampling layers downsample/upsample by a factor of two. 

fter every convolutional layer, suDNN uses standard batch nor- 

alization ( Ioffe and Szegedy, 2015 ) and ReLU activation. The bot- 

leneck layer is followed by a dropout layer (characterized by 

(p) ) for regularization ( Srivastava et al., 2014 ), using a dropout- 

robability value of p = 1 / 1024 during training as well as infer-

nce. Here, p is a hyperparameter, set such that it drops on an 

verage one channel (out of 1024 channels, see Fig. 2 ) at the 

ottleneck layer per forward pass. suDNN uses the Adam opti- 

izer ( Kingma and Jimmy, 2015 ) during training, including 	 2 reg- 

larization on the weights, for 500 epochs, with an initial learning 

ate of γ = 0 . 0 0 0 03 . suDNN employs a cosine annealing strategy

or updating γ . During inference, we rely on the dropout layer to 

enerate the multiple outputs for a given input X i by performing 

ultiple forward passes, say M (here, M = 50 ), through the DNN 

ith dropouts activated, yielding a set of outputs { ̂  Y m 

i 
, ̂  C m 

i 
} M 

m =1 . 

ere, ̂ Y m 

i 
is a particular sampled instance of the stochastic output 

 

 pi . We infer the final predicted images as the averages of the M

utputs, i.e., ̂  Y i := (1 /M) 
∑ M 

m =1 ̂
 Y m 

i 
and 

̂ C i := (1 /M) 
∑ M 

m =1 ̂
 C m 

i 
. 
5 
. Experiments and results 

This section describes the in vivo data acquired for this work, 

he baseline methods used for comparison, the empirical analyses 

or evaluating the robustness of all methods to OOD degradations 

n the input data, and ablation studies to analyze the contribution 

f various components in the suDNN framework. 

.1. In vivo data 

We acquired data using simultaneous PET-MRI in a cohort 

f 28 healthy individuals (volunteers with mean age 19.6 years 

nd standard deviation 1.7 years, including 21 females) on a 3T 

iemens Biograph mMR system, following institute ethics approval. 

he average dose administered for each subject was approxi- 

ately 230 MBq F-18-FDG. The MRI contrast images, i.e., ultra- 

hort echo time (UTE), T1 MPRAGE, and T2-SPC, were acquired 

uring the PET scan. The SD-PET image was reconstructed us- 

ng counts obtained over a duration of 30 min, starting 55 min 

fter the administration of the tracer. The total number of use- 
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ul counts over the 30-minute duration used for reconstruction 

f the SD-PET image were around 600 × 10 6 . To simulate the LD- 

ET data, we randomly selected around 3 . 4 × 10 6 counts, spread 

niformly over the scan duration, resulting in a DRF of around 

80 ×. For attenuation correction, pseudo-CT maps generated us- 

ng the UTE images ( Burgos et al., 2014 ) were employed. Both 

he SD-PET and LD-PET images were reconstructed using propri- 

tary software using ordinary-Poisson ordered-subset expectation- 

aximization (OP-OSEM) algorithm with three iterations and 21 

ubsets, along with point spread function (PSF) modeling and a 

ost-reconstruction Gaussian smoothing. The software produced 

econstructed PET images of voxel sizes 2.09 × 2.09 × 2.03 mm 

3 . 

he voxel size for the reconstructed MRI images was 1 mm 

3 

sotropic. For each subject, the LD-PET, SD-PET, and the T2w MRI 

mages were registered (using rigid spatial transformation) and re- 

ampled to the T1w MRI image space using ANTS ( Avants et al., 

014 ) software. For the task of predicting SD-PET images from the 

nput set of LD-PET, T1w MRI, and T2w MRI images, we randomly 

elected 20 subjects for training, 2 subjects for validation, and the 

emaining for testing. For each subject, we obtained 100 transaxial 

lices (around 70 slices within the cerebrum and around 30 slices 

n the cerebellum). 

.2. Baseline methods 

We evaluate the performance of the proposed suDNN in com- 

arison to five recently proposed DNN-based methods for SD-PET 

rediction. For a fair comparison, we incorporate a 2.5D-style (sim- 

lar to the strategy in Chen et al. (2019a) ) training scheme for all

ther methods. 

That is, to produce a predicted image for a given slice, we use 

ve slices as the input of the DNN (one central, two above, and 

wo below). The baseline methods are as follows. 

• M1: Conditional DIP. M1 is an unsupervised method based on 

conditional DIP in Cui et al. (2019) . The method is unsuper- 

vised and does not rely on any training data. As proposed in 

Cui et al. (2019) , the input to the DNN is the structural MRI

image. We use a U-Net as in Ronneberger et al. (2015) modi- 

fied to accept a two-channel input (T1w and T2w MRI). For this 

method, we use the validation set to tune the optimal number 

of epochs, to maximize the SSIM between the predicted PET 

image and the reference SD-PET image. 
• M2: Unimodal ResNet with perceptual loss. M2 is similar to 

the framework proposed in Gong et al. (2018) . M2 uses only the 

PET image (unimodal) as input, with a standard ResNet archi- 

tecture ( Gong et al., 2018 ), and employs a perceptual loss that 

is based on features obtained from a VGG network trained on 

natural images. 
• M3 and M4: 2.5D unimodal and multimodal U-Net, re- 

spectively. Both M3 and M4 use the architecture described 

in Xu et al. (2017) . M3 uses only the PET image as (unimodal)

input Xu et al. (2017) . M4 uses PET and multi-contrast MRI im- 

ages as multi-channel input ( Chen et al., 2019a ). Both M3 and 

M4 explicitly model and estimate the residuals between the in- 

put LD-PET and the reference SD-PET image. 
• M5: Multi-channel GAN. M5 is similar to the GAN-based model 

in Wang et al. (2018) that uses multi-channel input compris- 

ing PET and multi-contrast MRI images, including diffusion- 

weighted MRI. Because of the unavailability of diffusion- 

weighted MRI images for our dataset, and for a fair comparison 

with all the other methods, we use only the T1w and T2w MRI 

images for training. The model in Wang et al. (2018) employs a 

anatomical-region-specific learnable 1 × 1 convolution layer to 

produce a fused image that becomes the input to the generator 
6 
of the GAN. We employ a 2.5D U-Net-based architecture for the 

generator. 

M1 and M2 focus on denoising and not on dose reduction. M3–

5 propose to achieve DRFs in the range 4–200. DNNs M1, M3, 

4, M5, and suDNN employ similar U-Net-based backbone archi- 

ecture with comparable number of parameters. On the other hand, 

2 employs a ResNet as described above, with significantly more 

arameters compared to other DNNs. For all the DNNs that ne- 

essitate a training stage (M2–M5 and suDNN), we use the same 

raining-validation-testing split. The hyperparameters for all the 

NNs are tuned using the validation set. We trained all the DNNs 

ith a decaying learning rate for 500 epochs. In practice, we ob- 

erved that all the models converged within 30 0–40 0 epochs. For 

ach DNN, we selected the model that provided the best perfor- 

ance (SSIM) on the validation set. For quantitative evaluation of 

he quality of the predicted PET image, with respect to the refer- 

nce SD-PET image, we use (i) peak SNR (PSNR) and (ii) structural 

imilarity index (SSIM) ( Wang et al., 2004 ). 

.3. Out-of-distribution (OOD) data 

For training all the DNNs discussed in this paper, we use the 

raining set of LD-PET images from a single cohort discussed in 

ection 4.1 . Primarily, we evaluate the performance of all the 

ethods on the testing set of LD-PET images. In a practical set- 

ing, even with a fixed scanner and imaging protocol (i.e., the ac- 

uisition schemes for MRI contrasts and the radiotracer used for 

ET), various factors are contributing to OOD data, e.g., variation 

n photon-count statistics due to slight variations in the injected 

ose, physiological factors like body mass index (BMI), aging brain, 

athology. In addition to the above, several other factors can con- 

ribute to OOD data, as described in Section 1 . Hence, to evalu- 

te the generalizability of the proposed model, we provide a com- 

rehensive evaluation on OOD data arising from several acquisi- 

ion scenarios: (i) variation due to reduced photon counts (re- 

uced SNR), (ii) variation due to patient motion, (iii) variation due 

o pathology (Alzheimer’s disease) and age, and (iv) variation due 

o PET and MRI data acquired using separate scanners or differ- 

nt imaging protocols. We now discuss the above-mentioned OOD 

atasets in detail. 

OOD data with variation in photon counts or SNR (OOD- 

ounts). We generate OOD PET data by varying the photon counts 

nd the associated SNR in the sinogram space, followed by OSEM 

econstruction with post-reconstruction Gaussian smoothing. We 

enerate two additional sets of test data at increasing degradation 

evels in the input LD-PET data, namely very low-dose (vLD-PET) 

nd ultra-low-dose (uLD-PET). We generate the OOD test set con- 

isting of vLD-PET and uLD-PET as follows. 

We retrospectively (i) scale down the intensities in the LD-PET 

mage, (ii) forward-project the resulting scaled-down LD-PET image 

sing the sinogram operator S , (iii) introduce Poisson noise in the 

inogram domain on the projected image, and (iv) perform OSEM- 

ased reconstruction to get the input vLD-PET or uLD-PET image. 

or forward projection of the LD-PET images, we use the projection 

odel from STIR ( Thielemans et al., 2012 ) that is based on a ray-

racing algorithm for the system geometry, which is similar to that 

sed in the Siemens PET-MRI system used in this study. The PSNR 

alue, averaged across the test set, between the reference SD-PET 

mage and LD-PET image was around 21 dB. To obtain vLD-PET and 

LD-PET, we scale the LD-PET images such that, after OSEM recon- 

truction, the PSNR values, averaged across the test set, between 

he reference SD-PET and vLD-PET image was around 17 dB; the 

SNR for the uLD-PET image was around 13 dB. That is, the PSNR 

alues for the set of uLD-PET images was around 0.66 × that of the 

D-PET images. This variation in the PSNR values was motivated by 
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Fig. 3. Qualitative evaluation of the methods for three different levels of degradation of the input PET data: LD-PET (row a), vLD-PET (rows b and c), and uLD-PET 

(rows d and e). The ground-truth SD-PET along with the corresponding sinogram are shown in the topmost row. Panels (a1-a2) show the input LD-PET, (b1-b2) vLD-PET, and 

(d1-d2) uLD-PET sinograms and images; panels (a3-a8) the predicted images for all methods for LD-PET; panels (b3-b8) and (c1-c6) the predicted images and corresponding 

residual images (with respect to SD-PET) for vLD-PET; panels (d3-d8) and (e1-e6) the predicted images and corresponding residual images for uLD-PET as input; panels 

(a9-b9) and (d9) the sinograms of the predicted images (panels (a8, b8, and d8)); and panels (c7) and (e7) show the residuals of the predicted sinograms in comparison to 

the reference SD-PET sinogram. 
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he work in Watson et al. (2005) that gives an example where the 

ET images’ mean SNR reduced by a factor of around 0.66 when 

he patients’ body weight increased from around 60 kg to around 

20 kg. 

OOD data from different imaging protocols (OOD-Protocol). 

e use the dataset corresponding to the visual task experi- 

ents used for functional PET analysis in Li et al. (2020) and 

amadar et al. (2019) . In brief, this dataset comprises T1w MRI, 

2w MRI, and dynamic PET scans from six healthy subjects with 

ean age 24.3 years and standard deviation 3.8 years, including 

ve females. The scanner and MRI structural imaging protocols 

re the same as the data used for training all the DNN models 

 Section 4.1 ). For PET, the scanning protocol involved bolus injec- 

ion of 100 MBq of the radiotracer, which is significantly different 

rom the training data (described in Section 4.1 ). We consider the 

econstructed PET images using the entire list-mode data as the 

eference PET image. We generated a lower-quality PET image (in- 

ut PET image) by using a part of the list-mode data such that the 

SNR value, averaged across the entire dataset, between the refer- 

nce PET image and input image was around 24 dB. 

OOD data from motion artifacts (OOD-Motion). Here, we use 

he dataset that is part of the study in Chen et al. (2019b) . For

OD-Motion, we use the data corresponding to ”Motion Controlled 

tudy” from that study. [18-F] FDG PET and structural MRI (T1w 

nd T2w) data were acquired from a healthy volunteer. For FDG- 

ET, a bolus of 110 MBq FDG was provided, and specific instruc- 

ions pertaining to the head movement were provided at spe- 

ific scan times. We consider the reconstructed images using the 

i) entire list-mode data and (ii) motion correction algorithm pro- 
7 
osed in Chen et al. (2019b) as the reference PET image. We 

enerated the lower-quality PET image (input PET image) by us- 

ng part of the list-mode data. Importantly, we did not perform 

ny motion correction during or post-reconstruction. The PSNR 

alue averaged across the entire OOD-Motion dataset, between 

he reference PET image and the input PET image, was around 

9 dB. 

OOD data from ADNI (OOD-ADNI: Alzheimer’s Dementia; 

ross-scanner; multi-site; aged population data). We obtain 

 dataset from the Alzheimer’s disease neuroimaging initiative 

ADNI) database ( Weiner et al., 2017 ), which is a well-known pub- 

icly available dataset. We randomly selected data for 25 subjects 

mean age 77 years and standard deviation 10.1 years, including 

 females) categorized as follows. (i) normal aging (2 subjects), 

ii) early mild cognitive impairment (EMCI, 4 patients), (iii) mild 

ognitive impairment (MCI, 4 patients), (iv) late mild cognitive im- 

airment (LMCI, 8 patients), and (v) dementia or AD (7 patients). 

e obtained T1w, T2w, and [18-F] FDG PET images for all the sub- 

ects mentioned above. The structural MRI images were acquired 

n a 1.5T and 3T scanners using 3D MPRAGE for T1w and FLAIR for 

2w images with a resolution of 1mm 

3 isotropic. All the PET im- 

ges were obtained at a resolution of 1.01 × 1.01 × 2.02 mm 

3 . In 

omparison, the LD-PET and SD-PET data from OOD-Counts used 

or training the DNNs, were acquired on a 3T simultaneous PET- 

RI scanner with a resolution of 1 mm 

3 isotropic for MRI and 2.09 

2.09 × 2.03 mm 

3 for PET. We registered and resampled all the 

ET and MRI images from the ADNI database to one of our train- 

ng subjects to overcome differences in image resolution and image 

atrix dimensions. For evaluation, we considered the provided re- 
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Fig. 4. Quantitative evaluation of the methods for three different levels of 

degradation of the input PET data: LD-PET, vLD-PET, and uLD-PET. (a) PSNR and 

(b) SSIM values for the predicted PET images on 100 brain slices for each test set. 

The plots depict performance on the test-set averaged over a 3-fold cross-validation 

scheme. 
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onstructed images as reference. We retrospectively generated the 

egraded input images such that the PSNR value, averaged across 

he OOD-ADNI test set, between the reference PET image and the 

egraded input PET image was around 21 dB. 

.4. Evaluation: qualitative and quantitative 

Figure 3 shows the predicted images from different methods 

cross three different variations of the LD-PET data for a repre- 

entative subject. The input PET images, i.e., LD-PET, vLD-PET, and 

LD-PET, appear in Fig. 3 (a2), (b2), and (d2), respectively; the cor- 

esponding sinograms appear in Fig. 3 (a1), (b1), and (d1). The DIP- 

ased M1 ( Fig. 3 (a3), (b3), (d3)) denoises the input LD-PET image. 

owever, as expected, being unsupervised and with denoising as 

ts focus, it is unable to enhance the low counts and performs 

oorly in predicting the FDG uptake in the reference SD-PET im- 

ge. Unlike M1, the ResNet-based M2 ( Fig. 3 (a4), (b4), (d4)) is de-

igned to predict the activity in the reference SD-PET image. How- 

ver, even with the LD-PET input, it is unable to produce images 

ith accurate textural features because of several possible factors. 

ne factor is that M2’s design cannot leverage the information in 

he MRI image. M2 relies on a standard ResNet architecture that 

mploys short-range skip connections compared to longer-range 

ierarchically-designed skip connections in suDNN’s U-Net archi- 

ecture. Methods M3 ( Fig. 3 (a5), (b5), (d5)) and M4 ( Fig. 3 (a6),

b6), (d6)), which rely on predicting the residual images as output, 

roduce realistic SD-PET images when using LD-PET as the input. 

owever, when using vLD-PET and uLD-PET as inputs, both M3 and 

4 show some residual noise in the images despite reasonably 

ecovering the contrast and texture similar to the SD-PET image. 

4 improves over the loss in contrast shown by M3, emphasizing 

he contribution of the multimodal MRI input. M5, which is GAN- 

ased, shows superior performance with LD-PET ( Fig. 3 (a7)), show- 

ng little degradation (in terms of contrast and certain structures 

ike the sulci and gyri) with vLD-PET ( Fig. 3 (b7)), and does not pre-

ict the desired texture and contrast when using uLD-PET as input 

 Fig. 3 (d7)). On the other hand, our suDNN shows superior predic- 

ion across varying input quality ( Fig. 3 (a8), (b8), (d8)). Compared 

o other baselines, suDNN’s results show more realistic texture and 

ontrast, and reduced magnitudes in the differences between the 

redicted and the reference SD-PET images ( Fig. 3 (c6), (e6)). For 

ur suDNN, the sinograms of the predicted images ( Fig. 3 (a9), (b9), 

d9)) demonstrate little difference across OOD variations in input 

mage quality, which is in agreement with the quality of the pre- 

icted images obtained with different low-dose inputs. The resid- 

al images between the sinograms of the predicted images and 

hat of the reference image SD-PET corresponding to the inputs 

LD-PET and uLD-PET are shown in Fig. 3 (c7)-(d7). 

Figure 4 (a)-(b) show quantitative plots with PSNR and SSIM 

alues averaged over the 100 slices of every subject from the test 

et in 3-fold cross validation (18 patients for training, 4 for valida- 

ion, 6 for testing) for different kinds of PET image inputs, i.e., LD- 

ET, vLD-PET, and uLD-PET. As the input quality degrades, all meth- 

ds show a drop in performance. Nevertheless, our method shows 

he most graceful degradation (around 3.5 dB with uLD-PET). On 

he other hand, the other methods show a severe loss in their per- 

ormance with uLD-PET, e.g., around 7 dB for M5, around 10 dB for 

4, and around 11 dB for M3. A similar trend can be observed in

he SSIM plot ( Fig. 4 (b)). While our method shows a degradation 

f around 0.02 with uLD-PET as input as compared to LD-PET as 

he input, other methods show a severe decrease in SSIM values 

ith uLD-PET, e.g., around 0.04 for M5, around 0.13 for M4, and 

round 0.1 for M3. Thus, with LD-PET as input, the performance of 

uDNN is comparable to M3–M5; nevertheless, as the input qual- 

ty degrades, suDNN significantly outperforms all other methods 

emonstrating substantially higher robustness/insensitivity to OOD 
8 
ata. We conducted paired t -test for SSIM and PSNR values for all 

ethods for the three low-dose inputs. The improvement using our 

uDNN method was found to be statistically significant ( p-value 

0 . 001 ) in comparison to all other methods (M1–M5) at all in- 

ut quality levels (LD-PET, vLD-PET, and uLD-PET). 

For the results corresponding to uLD-PET input in Fig. 3 , we 

arefully analyze the predicted images along with the input and 

he reference PET images. The zoomed region of interest (ROI) in- 

ludes the caudate, putamen, and thalamus. The caudate nucleus 

hows hyperintensity in the SD-PET image (highlighted using the 

hite arrow in Fig. 5 (a4)) that is not the case in the uLD-PET image

 Fig. 5 (a3)-(b3)). The unimodal DNN M3 ( Fig. 5 (c1)-(d1)) severely 

nderestimates the uptake in the caudate and the thalamus re- 

ions. Although our suDNN ( Fig. 5 (c4)-(d4)) provides the best esti- 

ate of the predicted images, other multimodal DNN methods like 

4 and M5 ( Fig. 5 (c2)-(d2) and (c3)-(d3)) do show some recovery 

f the hyperintensity in the caudate and thalamus regions com- 

ared to M3. This demonstrates the importance of including the 

RI structural image in the input, where the results ( Fig. 5 (a1)- 

b1) and (a2)-(b2)) distinctly show the subcortical nuclei in the 

erebrum. 

Figure 6 shows the predicted PET images and residuals for 

he models M3, M4, M5, and suDNN on three additional OOD 

atasets OOD-Protocol, OOD-Motion, and OOD-ADNI. For OOD- 

rotocol, while M3 ( Fig. 6 (a2)) shows under-estimation (compared 

o the reference) in the entire brain region, M4 ( Fig. 6 (a3)) shows

ncreased activity across the entire brain. On the other hand, 

uDNN ( Fig. 6 (a5)) closely matches the activity distribution across 

rain regions without severe under- or over- estimation, yielding 

he least residual magnitudes ( Fig. 6 (b4)). For OOD-Motion, un- 
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Fig. 5. Zoomed ROIs of the input, reference, and predicted images with for the 

case of uLD-PET. (a1)–(a3) : input T1w MRI, T2w MRI, and uLD-PET image images. 

(a4) : reference SD-PET image. (c1)–(c4) : predicted images from the methods M3–

M5 and the proposed suDNN method. (d1)–(d4) corresponding zoomed regions. 
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ike OOD-Protocol, both M3 and M4 ( Fig. 6 (c2) and (c3)) show in-

reased activation across the entire brain region and are also un- 

ble to recover certain anatomical structures (e.g., caudate nuclei). 

elatively, suDNN ( Fig. 6 (c5)) is able to closely match the activ- 

ty distribution across brain regions. For OOD-ADNI too, suDNN 

 Fig. 6 (e5)) provides substantially improved images compared to 

ther methods ( Fig. 6 (e2)–(e4)) with the least residual magnitudes. 

cross all the three OOD datasets, M5 ( Fig. 6 (a4, c4, and e4) and

b3, c3, and f3)) is unable to recover certain subcortical structures. 

evertheless, unlike M3 and M4, it does not suffer from severe 

nder- or over-estimation. Thus, across the three additional OOD 

atasets discussed here, our proposed method (suDNN), shows re- 

iable (i) activity estimation and (ii) anatomical structure restora- 

ion compared to M3, M4, and M5. 

Figures 7 (a)-(b) show quantitative plots with PSNR and SSIM 

alues for 100 slices of every subject for each of the three addi- 

ional OOD datasets: OOD-Protocol, OOD-Motion, and OOD-ADNI. 

he dotted lines in both the plots indicate the median PSNR and 

SIM values of suDNN evaluated on LD-PET dataset (part of OOD- 

ounts) from Fig. 4 . Across all the three OOD datasets, our method 

erforms significantly better (around 4 dB for OOD-Protocol, and 

round 1.5 dB for OOD-Motion and OOD-ADNI) than M3, M4, 

nd M5. On OOD-Protocol, our method’s performance is compara- 

le to its corresponding performance on the LD-PET test data (in 

OD-Counts). A similar trend can be observed in the SSIM plot 

 Figs. 7 (b)). While our method on OOD-Protocol shows comparable 

SIM values compared to LD-PET data in OOD-Counts, it shows a 

light degradation of around 0.1 and 0.2 for OOD-Motion and OOD- 

DNI, respectively. 

.5. Ablation studies: qualitative and quantitative 

We perform an ablation study to analyze the contribution from 

ifferent com ponents in the proposed DNN. To this end, consistent 

ith the prior works in this domain, we found that using a 2.5D- 

nput based training scheme provided substantially improved re- 

ults in comparison to using 2D-only training. Moreover, as evident 
9 
rom the results in Figs. 3–5 , M3 and M4 that rely on predicting

he residual between the LD-PET and the SD-PET images, are not 

obust to OOD acquisitions. Hence, to evaluate the importance of 

ultiple components in the proposed suDNN framework, we eval- 

ate four other ablated versions of suDNN, i.e., suDNN-Ablated1, 

uDNN-Ablated2, suDNN-Ablated3, and suDNN-Ablated4. 

• suDNN-Ablated1: 2.5D unimodal U-Net. We define a 

basic DNN that includes a U-Net architecture (similar 

to Xu et al. (2017) ) with a unimodal input, but with a 

modified output such that it directly maps to the PET image 

instead of estimating the residual between the input LD-PET 

and the reference SD-PET image (as in M3). suDNN-Ablated1 

is trained using the 2.5D scheme, penalizing the mean-squared 

error in the image space, say L I ( ̂
 Y , U 

SD ) , between the predicted

and the reference images. 
• suDNN-Ablated2: 2.5D multimodal U-Net. We modify the 

DNN suDNN-Ablated1 by replacing the unimodal input with a 

multimodal input including multi-contrast MRI images, retain- 

ing the same loss function as suDNN-Ablated1. 
• suDNN-Ablated3: 2.5D multimodal U-Net with manifold loss. 

In addition to the loss L I , this DNN includes a learned 

manifold-based loss L E ( ̂
 Y , U 

SD ) similar to the perceptual 

loss in Johnson et al. (2016) or the manifold-based loss 

in Uddeshya and Awate (2019) ; thus, the total loss is L I + λE L E ,

where the free parameter λE ∈ R 

+ controls the weight of the 

loss term L E . The learned-manifold based loss relies on learning 

an autoencoder trained using the set of SD-PET images. The loss 

function L E penalizes the differences between the encodings 

obtained by applying the encoder �E (from learned autoen- 

coder) to the predicted PET and reference SD-PET images. That 

is, L E ( ̂
 Y , U 

SD ;�E ) := ‖ �E ( ̂
 Y ) − �E (U 

SD ) ‖ 2 F , where ‖ · ‖ F repre-

sents the Frobenius tensor norm. 
• suDNN-Ablated4: 2.5D multimodal U-Net with physics-based 

loss. Instead of the learned-manifold loss in suDNN-Ablated3, 

suDNN-Ablated4 uses a sinogram-space loss L S given as L S := 

‖S ̂  Y − S ̂  U 

SD ‖ 2 
F 

. Thus, the total loss for suDNN-Ablated4 is L I + 

λS L S , where λS ∈ R 

+ controls the strength of L S . 

The free parameters λE and λS are automatically tuned using 

he validation set; in this paper, they take the values λE = 0 . 002

nd λS = 0 . 003 . 

Figure 8 shows quantitative evaluation of the DNNs in the 

blation study for the input PET images LD-PET, vLD-PET, and 

LD-PET. Similar to the results in Fig. 4 , DNNs with a multi- 

odal input improve substantially over DNNs with unimodal input 

suDNN, suDNN-Ablated2, suDNN-Ablated3, and suDNN-Ablated4 

etter than suDNN-Ablated1). Inclusion of the learned manifold- 

ased loss L E (·) , in addition to the image space loss L I (·) ,
or suDNN-Ablated3 provides improved robustness over suDNN- 

blated2 and suDNN-Ablated1. Further, suDNN-Ablated4 that in- 

ludes a physics-based loss instead of the learned manifold- 

ased loss in suDNN-Ablated3 shows significant improvement over 

uDNN-Ablated3 with vLD-PET and uLD-PET. Finally, the proposed 

uDNN that models uncertainty in both image and sinogram space, 

rovides comparable performance to suDNN-Ablated4, but signifi- 

antly better than suDNN-Ablated1, suDNN-Ablated2, and suDNN- 

blated3 at higher levels of degradation of the input. In addition 

o providing improved accuracy and robustness to OOD data over 

ther methods, the predicted variance image ̂ C from the proposed 

NN can potentially be useful for quantifying the uncertainty in 

he predicted images discussed in Section 4.6 . 

Figure 9 provides visual comparison of the output SD-PET im- 

ges from the ablated suDNN versions suDNN-Ablated3, suDNN- 

blated4, and the proposed suDNN, for the input PET images 

i) LD-PET, (ii) vLD-PET, and (iii) uLD-PET. For the LD-PET and 

LD-PET inputs, the predicted PET images from suDNN-Ablated3 
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Fig. 6. Qualitative evaluation of the methods for three additional types of OOD data: OOD-Protocol (rows a and b), OOD-Motion (rows c and d), and OOD-ADNI (rows 

e and f). Panels (a1, c1, and e1) correspond to the input PET images, and (a6, c6, and e6) correspond to the reference PET images. Columns 2–5 show the predicted images 

and residuals for the methods: M3 (column 2), M4 (column 3), M5 (column 4), and suDNN (column 5). 
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 Fig. 9 (d1)-(d2)) are closer to that of suDNN-Ablated4 and suDNN 

 Fig. 9 (c1),(b1) and Fig. 9 (c2),(b2)). However, suDNN-Ablated3 

hows substantial degradation with uLD-PET as input ( Fig. 9 (d3)). 

he outputs of suDNN-Ablated4 ( Fig. 9 (c1)–(c3)) are very similar 

o that of suDNN ( Fig. 9 (b1)–(b3)). This emphasises that modeling 

ncertainty in both the image space and the sinogram space, need 

ot hamper the image quality. 

.6. Utility of uncertainty maps 

We now analyze the uncertainty maps produced by the pro- 

osed suDNN with the inputs uLD-PET and LD-PET, and how to ex- 

ract useful information from the same. For the input PET images 

LD-PET and LD-PET ( Fig. 10 (a1) and (a4)), the network produces 

he predicted images ( Fig. 10 (a2) and (a5), respectively), along with 
10 
he per-voxel variances ̂ C . For improved visualization, we show 

he uncertainty maps, i.e., per-voxel square-root of the variance 

aps, ̂ σ := 

√ ̂ C ( Fig. 10 (a3) and (a6)). We define two global thresh- 

lds to identify pixels with high uncertainty and high residual 

agnitudes, i.e., threshold δU for the predicted uncertainty im- 

ge and threshold δR for the residual-magnitude image. That is, 

oxel locations with residual-magnitude values r ≥ δR indicate sub- 

ptimal reconstruction, and voxel locations with 

̂ σ ≥ δU indicate 

redictions with high uncertainty. Subsequently, we threshold the 

esidual-magnitude image r and the uncertainty image ̂ σ to get 

wo binary masks, namely, BM1 and BM2. We tune the values for 

he global thresholds empirically to δR = 0 . 25 and δU = 0 . 03 , re-

pectively. Finally, to improve the utility of the uncertainty maps, 

e generate two quantification maps: (i) Q ( ̂  σ ; r, δ ) ( Fig. 10 (b2) 
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Fig. 7. Quantitative evaluation of the methods for three additional OOD data: 

OOD-Protocol (6 subjects), OOD-Motion (1 subject), and OOD-ADNI (25 subjects). 

(a) PSNR and (b) SSIM values for the predicted PET images on 100 brain slices for 

each test subject under each case of OOD. The dotted lines represent the median 

PSNR (in (a)) and SSIM (in (b)) values obtained from the performance of suDNN on 

LD-PET data (part of OOD-Counts) in Fig. 4 . 

Fig. 8. Ablation Study: Quantitative evaluation for the ablation study at three 

different levels of degradation of the input PET data: LD-PET, vLD-PET, and uLD- 

PET. (a) PSNR and (b) SSIM values for predicted SD-PET images, on 100 brain slices 

in every test set. 
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11 
nd (b5)), obtained by applying the binary mask BM1 on 

̂ σ , and 

ii) Q 2 ( ̂  σ ; δU ) ( Fig. 10 (b2) and (b5)), obtained by applying the bi-

ary mask BM2 on ̂

 σ . As expected, the map Q 1 with the LD-PET in-

ut has substantially fewer non-zero values, compared to the map 

 1 obtained with uLD-PET as input. A similar trend is observed for 

he map Q 2 . Thus, as expected, suDNN’s prediction from uLD-PET 

s input shows higher uncertainty compared to its prediction from 

D-PET as input. Notably, the high-intensity values in the map Q1 

gree with the high-intensity values in the map Q2 ; this implies 

hat regions with high residual magnitudes correspond to regions 

ith high uncertainty in the predicted images. In this way, the 

ap Q 2 (available at inference) might act as a proxy for the pre- 

iction error (i.e., residual-magnitude map Q 1 that is unavailable at 

est time) while inferring a PET reconstruction from test data. 

. Discussion and conclusion 

This paper presents a novel sinogram-based and uncertainty- 

ware DNN framework, namely, suDNN, for estimating SD-PET im- 

ges from LD-PET images, and given the associated multi-contrast 

RI, in simultaneous PET-MRI systems. Specifically, we learn the 

apping using LD-PET images associated with a DRF of 180 ×, and 

how that the learned mapping is robust to practical OOD degra- 

ations in the data, i.e., PET data with further reduction in counts 

eading to vLD-PET (10 ×) and uLD-PET (100 ×) images, which re- 

listically model the SNR variation of the OSEM-reconstructed PET 

mages in practical scenarios Watson et al. (2005) . 

Furthermore, given the trained model on LD-PET images, we 

valuated the performance on three additional OOD datasets cap- 

uring variation in data due to several factors such as: FDG in- 

usion protocol and dose (OOD-Protocol), subject motion (OOD- 

otion), and age, pathology, multi-site, cross-scanner data acquisi- 

ion (OOD-ADNI). Compared to several existing methods, empirical 

vidence shows suDNN to be more robust ( Figs. 3, 4, 6 , and 7 ). Fur-

hermore, unlike other methods, suDNN models the per-voxel het- 

roscedasticity during learning and inference and, thereby provides 

seful information about the uncertainty in the predicted images. 

mproving the robustness of the learned DNN to effectively handle 

 wide spectrum of OOD variations reduces the number of learned 

NN models required for deployment (for a particular combination 

f a tracer and an anatomical region). 

This is the first work, to the best of our knowledge, to include a 

ET-physics based (sinogram domain) loss function for enhancing 

D-PET images. The ablation study ( Fig. 8 ) shows that inclusion of 

he physics-based transform-domain loss function improves the ro- 

ustness to OOD data in the form of lower counts. This finding is 

onsistent with findings in undersampled MRI reconstruction that 

how that modeling penalties in the transform/k-space domain im- 

rove the performance of the DNN ( Yang et al., 2017 ). This is also

he first work towards the modeling and quantification of the un- 

ertainty in the predicted SD-PET images from LD-PET images. 

Evaluating the performance of suDNN as well as other state- 

f-the-art DNNs showed that the unimodal (M3) and the multi- 

odal (M4) residual-predicting U-Net DNNs are far less robust to 

OD input data in the form of vLD-PET and uLD-PET. Although, 

ith vLD-PET as input, the multimodal GAN-based M5 improves 

ver M3 and M4, it underestimates the SD-PET contrast with uLD- 

ET as input. Unlike the empirical analysis in previous works that 

mploy test data and training data having well-matched distribu- 

ions, we evaluate the robustness of all trained DNNs to OOD PET 

cquisitions leading to lower photon counts (at test time). While 

e train the DNN using LD-PET images and evaluate the learned 

odel on vLD-PET and uLD-PET images, one could also perform 

imilar studies by learning the DNN model at some other specific 

evel of image quality and evaluating the learned model at the re- 

aining levels. 
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Fig. 9. Results of DNNs in the ablation study with input PET images: LD-PET, vLD-PET, uLD-PET. Variations in input PET (a1)–(a4) : LD-PET, vLD-PET, uLD-PET, respectively. 

Predicted images using varying levels of PET input from: (b1)–(b3) : suDNN, (c1)–(c3) : suDNN-Ablated4, and (d1)–(d3) : suDNN-Ablated3. 

Fig. 10. Utility of Uncertainty Maps; Columns 1–3: uLD-PET as input; Columns 4–6: LD-PET as input. (a1) and (a4) : Input images uLD-PET and LD-PET. (a2) and (a5) : 

Predicted PET images ̂  Y . (a3) and (a6) : Predicted per-voxel standard deviation image 
√ ̂ C . (b1) and (b4) : Image r showing magnitudes of per-voxel residuals in U SD − ̂ Y . (b2), 

(b5) : Quantification map Q 1 ( ̂  σ ; r, δR ) ; (b3), (b6) : Quantification map Q 2 ( ̂  σ ; δU ) . We observe that the regions with large values in Q 1 are subsumed within region with large 

values in Q 2 . . 
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The use of multi-contrast MRI images as multi-channel input 

in M4, M5, and suDNN) provides a substantial improvement over 

nimodal PET-only inputs (M2 and M3), which is consistent with 

he findings of the other works for this problem ( Wang et al., 2018;

hen et al., 2019a ). 

The evaluation study on the three additional OOD datasets 

howed that even without additional training with the new data, 

ur model is able to better adapt to restore structures and activity 

istribution both. For the OOD data arising from the same imag- 
12 
ng center, with variations in PET (e.g., due to counts, population, 

ubject motion, reconstruction pipeline), but retaining the same 

RI contrasts (T1w MRI and T2w MRI), the predicted PET im- 

ges closely matched the reference PET images. However, for better 

eneralizability spanning across scanners, imaging protocol, differ- 

nces in PET radiotracer infusion protocol, as in the case of OOD- 

DNI dat aset, perf ormance of all DNN models can be improved by 

urther training of the pre-trained DNNs using a few samples from 

he newer imaging sites. 
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Fig. 11. Feature maps obtained from initial layers of the proposed network with 

unimodal (PET only) and multimodal inputs (PET and multi-contrast MRI both) . 

Example 6 feature maps (out of 64) selected at the output of the second layer of 

the DNN are shown. Feature maps have been normalized for better comparison be- 

tween the unimodal and the multimodal case. 
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Furthermore, the ablation studies ( Figs. 8 and 9 ) show that 

NNs that include multimodal inputs as well as transform-domain 

osses (e.g., manifold loss or sinogram loss) produce better out- 

uts even with reduced counts in the PET images. The results 

n Fig. 9 also emphasize the importance of the information from 

he PET images for improved accuracy. For DNN models that em- 

loy multimodal input (in suDNN and other works), e.g., including 

ulti-contrast MRI as input, the non-PET modalities help improve 

he prediction by infusing reliable information in the form of inter- 

odality statistical dependencies. In this context, to retain the in- 

erpretation of PET imaging as quantitative imaging, a recalibration 

echanism based on relative reduction in activity ( Ouyang et al., 

019 ) may be needed, which is a part of our future work. 

To analyze the contribution of the multimodal inputs in com- 

arison to the unimodal (PET-only) inputs, we visualize the fea- 

ure maps obtained from an initial layer (second layer) of the DNN, 

rained with unimodal and with multimodal inputs, while main- 

aining the same network architecture. Fig. 11 shows that the fea- 

ure maps obtained using the multimodal inputs show anatomi- 

al features more clearly, compared to the unimodal case, as ex- 

ected. We demonstrated the potential utility of the generated un- 

ertainty maps ( Fig. 10 ) by defining global thresholds in terms of 

esidual magnitude and uncertainty values obtained in the exper- 

ments. Future work calls for defining these thresholds in terms 

f physically meaningful values. There could be other approaches 

uch as in Gal and Ghahramani (2016) that model dropout within 

 variational-learning framework for uncertainty estimation, which 

ay result in non-trivial extensions and modifications of the pro- 

osed suDNN framework. However, studying such approaches is 

eyond the scope of this work. 

Some aspects of the analysis within this paper can improve 

n future works. First, suDNN uses a 2.5D-style input instead of 

ull 3D volumes. In the future, we plan to accommodate train- 

ng using 3D images, which requires handling of a 3D system ma- 

rix, demanding high computational power. Second, in addition to 

he quantitative performance metrics such as PSNR and SSIM, for 

linical acceptance, perceptual scores provided by radiologists, as 

n Sanaat et al. (2020) , Chen et al. (2019a) , can provide insights.

hird, although suDNN shows robustness to OOD data by produc- 

ng qualitatively superior PET images even with uLD-PET, a re- 

alibration mechanism may benefit clinical interpretation towards 

uantitative imaging. Finally, while the size of the dataset used in 

his paper is larger than those used in the publications involving 

he baseline methods (M1–M5), we plan to evaluate the proposed 

ethod on multiple cohorts, including covering healthy and patho- 

ogical conditions. 

In summary, our suDNN framework, informed by 

he underlying imaging physics and that models uncer- 

ainty/heteroscedasticity, achieves a more robust mapping from 
13 
LD PET images (including the multi-contrast MRI) to SD-PET 

mages. suDNN demonstrates robustness to unseen OOD PET 

cquisitions and provides an estimate of the underlying uncer- 

ainty of the prediction, which facilitates a new paradigm of risk 

ssessment in the application of DNNs to low dose PET image 

econstruction. The method has the potential to dramatically 

mprove the utility of uLD PET imaging in diagnostic imaging, 

herapeutic monitoring, and drug development research in on- 

ology, neurology, and cardiology. Physics-inspired DNN-based 

econstruction of low-dose PET scans has the potential to substan- 

ially expand the use of PET in longitudinal studies and imaging 

f radiation-sensitive populations, including children and pregnant 

omen. 
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